skip to main content

Title: A household-scale life cycle assessment model for understanding the food-energy-water nexus

The household is an important locus of decision-making regarding food, energy, and water (FEW) consumption. Changes in household FEW consumption behaviors can lead to significant reductions in environmental impacts, but it can be difficult for consumers to compare the relative impacts of their consumption quantitatively, or to recognize the indirect impacts of their household consumption patterns. We describe two novel tools designed to address this problem: A hybrid life cycle assessment (LCA) framework to translate household consumption of food, energy, and water into key environmental impacts including greenhouse gas emissions, energy use, and water use; and a novel software application calledHomeTrackerthat implements the framework by collecting household FEW data and providing environmental impact feedback to households. We explore the question:How can a life cycle assessment-based software application facilitate collection and translation of household consumption data to meaningful environmental impact metrics?A case study in Lake County, Illinois is presented to illustrate use of theHomeTrackerapplication. Output data describing environmental impacts attributable to household FEW consumption in the study area are shown in order to illustrate key features and trends observed in the case study population. The framework and its associated output data can be used to support experimental research at the household scale, allowing for examination of what users purchase and consume over an extended period of time as well as increased understanding of household behavior trends and environmental impacts, and as future work.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Vörösmarty, C.
Publisher / Repository:
Date Published:
Journal Name:
Frontiers in Environmental Science
Subject(s) / Keyword(s):
["environmental life cycle assessment","food-energy-water nexus","resource management","household consumption","web application development","household monitoring"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The COVID-19 pandemic has reduced travel but led to an increase in household food and energy consumption. Previous studies have explored the changes in household consumption of food and energy during the pandemic; however, the economy-wide environmental implications of these changes have not been investigated. This study addresses the knowledge gap by estimating the life cycle environmental impacts of U.S. households during the pandemic using a hybrid life cycle assessment. The results revealed that the reduction in travel outweighed the increase in household energy consumption, leading to a nationwide decrease in life cycle greenhouse gas emissions (−255 Mton CO2eq), energy use (−4.46 EJ), smog formation (−9.17 Mton O3eq), minerals and metal use (−16.1 Mton), commercial wastes (−8.31 Mton), and acidification (−226 kton SO2eq). However, U.S. households had more life cycle freshwater withdrawals (+8.6 Gton) and slightly higher eutrophication (+0.2%), ozone depletion (+0.7%), and freshwater ecotoxicity (+2.1%) caused by increased household energy and food consumption. This study also demonstrated the environmental trade-offs between decreased food services and increased food consumption at home, resulting in diverse trends for food-related life cycle environmental impacts.

    more » « less
  2. The recent decade has witnessed an increase in irrigated acreage in the southeast United States due to the shift in cropping patterns, climatic conditions, and water availability. Peanut, a major legume crop cultivated in Georgia, Southeast United States, has been a staple food in the American household. Regardless of its significant contribution to the global production of peanuts (fourth largest), studies related to local or regional scale water consumption in peanut production and its significant environmental impacts are scarce. Therefore, the present research contributes to the water footprint of peanut crops in eight counties of Georgia and its potential ecological impacts. The impact categories relative to water consumption (water depletion—green and blue water scarcity) and pesticide use (water degradation—potential freshwater ecotoxicity) using crop-specific characterization factors are estimated for the period 2007 to 2017 at the mid-point level. These impacts are transformed into damages to the area of protection in terms of ecosystem quality at the end-point level. This is the first county-wise quantification of the water footprint and its impact assessment using ISO 14046 framework in the southeast United States. The results suggest inter-county differences in water consumption of crops with higher blue water requirements than green and grey water. According to the water footprint analysis of the peanut crop conducted in this study, additional irrigation is recommended in eight Georgia counties. The mid-point level impact assessment owing to water consumption and pesticide application reveals that the potential freshwater ecotoxicity impacts at the planting and growing stages are higher for chemicals with high characterization factors regardless of lower pesticide application rates. Multiple regression analysis indicates blue water, yield, precipitation, maximum surface temperature, and growing degree days are the potential factors influencing freshwater ecotoxicity impacts. Accordingly, a possible impact pathway of freshwater ecotoxicity connecting the inventory flows and the ecosystem quality is defined. This analysis is helpful in the comparative environmental impact assessments for other major crops in Georgia and aids in water resource management decisions. The results from the study could be of great relevance to the southeast United States, as well as other regions with similar climatic zones and land use patterns. The assessment of water use impacts relative to resource availability can assist farmers in determining the timing and layout of crop planting. 
    more » « less
  3. Introduction The average American diet is high in red and processed meats which increases one's risk for chronic diseases and requires more land and water to produce and yields greater greenhouse gases (GHG) compared to other protein foods. Reduction of red and processed meat intake, such as seen with the Dietary Approaches to Stop Hypertension (DASH diet), could benefit human and environmental health. Objective The objective of this study is to predict the environmental sustainability of the DASH diet by evaluating the GHG, land use, and water withdrawals from protein foods within the self-selected diets of people who were encouraged to follow the DASH diet. Methods Dietary data was collected from 380 Midwesterners aged 35-70 years old with hypertension using the Automated Self-Administered 24-Hour (ASA 24) Recall System. DASH diet adherence was measured using a nutrient-based DASH score. GHG, land use, and water withdrawals were obtained using Carnegie Mellon University's Economic Input-Output Life Cycle Assessment ( ) using the Purchaser model (cradle-to-consumer). Multiple linear regressions were used to view associations between individual DASH nutrient scores and environmental impacts of total, animal, and plant protein foods. Results Diets that met DASH diet guidelines, as indicated by higher individual DASH nutrient scores, were associated with less GHG and land use from total and animal protein foods but more GHG and land use from plant-protein foods, with a few exceptions. The pattern was not clear for water withdrawals. Diets with the greatest adherence had around 25–50% lower GHG and land use from total protein foods than diets with the lowest adherence. Changes may be due to decreased consumption of total and animal protein foods, selection of animal protein foods with lower environmental impacts, and increased consumption of plant protein foods. Conclusion Adhering to the DASH diet can promote the consumption of less environmentally demanding protein foods resulting in lower GHG and land use from protein foods. However, claims regarding the sustainability of the entire dietary pattern cannot be determined based off the current study. Regardless, it is evident that environmental impacts should be considered alongside health impacts when selecting, promoting, or recommending a dietary pattern. 
    more » « less
  4. Life cycle impact assessment (LCA) provides a better understanding of the energy, water, and material input and evaluates any production system’s output impacts. LCA has been carried out on various crops and products across the world. Some countries, however, have none or only a few studies. Here, we present the results of a literature review, following the PRISMA protocol, of what has been done in LCA to help stakeholders in these regions to understand the environmental impact at different stages of a product. The published literature was examined using the Google Scholar database to synthesize LCA research on agricultural activities, and 74 studies were analyzed. The evaluated papers are extensively studied in order to comprehend the various impact categories involved in LCA. The study reveals that tomatoes and wheat were the major crops considered in LCA. The major environmental impacts, namely, human toxicity potential and terrestrial ecotoxicity potential, were the major focus. Furthermore, the most used impact methods were CML, ISO, and IPCC. It was also found that studies were most often conducted in the European sector since most models and databases are suited for European agri-food products. The literature review did not focus on a specific region or a crop. Consequently, many studies appeared while searching using the keywords. Notwithstanding such limitations, this review provides a valuable reference point for those practicing LCA. 
    more » « less
  5. Although vegetables are important for healthy diets, there are concerns about the sustainability of food systems that provide them. For example, half of fresh-market vegetables sold in the United States (US) are produced in California, leading to negative impacts associated with transportation. In Iowa, the focus of this study, 90% of food is imported from outside the state. Previous life cycle assessment (LCA) studies indicate that food consumption patterns affect global warming potential (GWP), with animal products having more negative impacts than vegetables. However, studies focused on how GWP, energy, and water use vary between food systems and vegetable types are less common. The purpose of this study was to examine these environmental impacts to inform decisions to buy locally or grow vegetables in the Midwest. We used a life cycle approach to examine three food systems (large-, mid-, and small-scale) and 18 vegetables commonly grown in/near Des Moines, Iowa. We found differences in GWP, energy, and water use (p ≤ 0.001 for each) for the three food systems with the large-scale scenario producing more emissions. There were also differences among vegetables, with the highest GWP for romaine lettuce (1.92 CO2eq/kg vegetable) approximately three times that of leaf lettuce (0.65 CO2eq/kg vegetable) at the large scale. Hotspots and tradeoffs between GWP, energy, and water use were also identified and could inform vegetable production/consumption based on carbon and water use footprints for the US Midwest. 
    more » « less