skip to main content

Title: A Life Cycle Assessment Approach for Vegetables in Large-, Mid-, and Small-Scale Food Systems in the Midwest US
Although vegetables are important for healthy diets, there are concerns about the sustainability of food systems that provide them. For example, half of fresh-market vegetables sold in the United States (US) are produced in California, leading to negative impacts associated with transportation. In Iowa, the focus of this study, 90% of food is imported from outside the state. Previous life cycle assessment (LCA) studies indicate that food consumption patterns affect global warming potential (GWP), with animal products having more negative impacts than vegetables. However, studies focused on how GWP, energy, and water use vary between food systems and vegetable types are less common. The purpose of this study was to examine these environmental impacts to inform decisions to buy locally or grow vegetables in the Midwest. We used a life cycle approach to examine three food systems (large-, mid-, and small-scale) and 18 vegetables commonly grown in/near Des Moines, Iowa. We found differences in GWP, energy, and water use (p ≤ 0.001 for each) for the three food systems with the large-scale scenario producing more emissions. There were also differences among vegetables, with the highest GWP for romaine lettuce (1.92 CO2eq/kg vegetable) approximately three times that of leaf lettuce (0.65 more » CO2eq/kg vegetable) at the large scale. Hotspots and tradeoffs between GWP, energy, and water use were also identified and could inform vegetable production/consumption based on carbon and water use footprints for the US Midwest. « less
Authors:
; ; ;
Award ID(s):
1855902 1828942
Publication Date:
NSF-PAR ID:
10334235
Journal Name:
Sustainability
Volume:
13
Issue:
20
Page Range or eLocation-ID:
11368
ISSN:
2071-1050
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Woody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon–neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis.

    Results

    The mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8–41.2 g CO2e MJ−1(static method) to 51.0–65.2 g CO2e MJ−1(using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0–19.7 g CO2e MJ−1(static method)more »and 29.6–43.4 g CO2e MJ−1in the time-based method. Forest growth and yields (controlled by forest management strategies) show more significant impacts on biofuel carbon intensity when the temporal effect of carbon is taken into consideration. Variation in forest operations and management (e.g., energy consumption of thinning and harvesting), on the other hand, has little impact on the biofuel carbon intensity.

    Conclusions

    The carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.

    « less
  2. The Midwest state of Iowa in the US is one of the major producers of corn, soybean, ethanol, and animal products, and has long been known as a significant contributor of nitrogen loads to the Mississippi river basin, supplying the nutrient-rich water to the Gulf of Mexico. Nitrogen is the principal contributor to the formation of the hypoxic zone in the northern Gulf of Mexico with a significant detrimental environmental impact. Agriculture, animal agriculture, and ethanol production are deeply connected to Iowa’s economy. Thus, with increasing ethanol production, high yield agriculture practices, growing animal agriculture, and the related economy, there is a need to understand the interrelationship of Iowa’s food-energy-water system to alleviate its impact on the environment and economy through improved policy and decision making. In this work, the Iowa food-energy-water (IFEW) system model is proposed that describes its interrelationship. Further, a macro-scale nitrogen export model of the agriculture and animal agriculture systems is developed. Global sensitivity analysis of the nitrogen export model reveals that the commercial nitrogen-based fertilizer application rate for corn production and corn yield are the two most influential factors affecting the surplus nitrogen in the soil.
  3. Abstract

    The COVID-19 pandemic has reduced travel but led to an increase in household food and energy consumption. Previous studies have explored the changes in household consumption of food and energy during the pandemic; however, the economy-wide environmental implications of these changes have not been investigated. This study addresses the knowledge gap by estimating the life cycle environmental impacts of U.S. households during the pandemic using a hybrid life cycle assessment. The results revealed that the reduction in travel outweighed the increase in household energy consumption, leading to a nationwide decrease in life cycle greenhouse gas emissions (−255 Mton CO2eq), energy use (−4.46 EJ), smog formation (−9.17 Mton O3eq), minerals and metal use (−16.1 Mton), commercial wastes (−8.31 Mton), and acidification (−226 kton SO2eq). However, U.S. households had more life cycle freshwater withdrawals (+8.6 Gton) and slightly higher eutrophication (+0.2%), ozone depletion (+0.7%), and freshwater ecotoxicity (+2.1%) caused by increased household energy and food consumption. This study also demonstrated the environmental trade-offs between decreased food services and increased food consumption at home, resulting in diverse trends for food-related life cycle environmental impacts.

  4. Sustainable provision of food, energy and clean water requires understanding of the interdependencies among systems as well as the motivations and incentives of farmers and rural policy makers. Agriculture lies at the heart of interactions among food, energy and water systems. It is an increasingly energy intensive enterprise, but is also a growing source of energy. Agriculture places large demands on water supplies while poor practices can degrade water quality. Each of these interactions creates opportunities for modeling driven by sensor-based and qualitative data collection to improve the effectiveness of system operation and control in the short term as well as investments and planning for the long term. The large volume and complexity of the data collected creates challenges for decision support and stakeholder communication. The DataFEWSion National Research Traineeship program aims to build a community of researchers that explores, develops and implements effective data-driven decision-making to efficiently produce food, transform primary energy sources into energy carriers, and enhance water quality. The initial cohort includes PhD students in agricultural and biosystems, chemical, and industrial engineering as well as statistics and crop production and physiology. The project aims to prepare trainees for multiple career paths such as research scientist, bioeconomy entrepreneur,more »agribusiness leader, policy maker, agriculture analytics specialist, and professor. The traineeship has four key components. First, trainees will complete a new graduate certificate to build competencies in fundamental understanding of interactions among food production, water quality and bioenergy; data acquisition, visualization, and analytics; complex systems modeling for decision support; and the economics, policy and sociology of the FEW nexus. Second, they will conduct interdisciplinary research on (a) technologies and practices to increase agriculture’s contributions to energy supply while reducing its negative impacts on water quality and human health; (b) data science to increase crop productivity within the constraints of sustainable intensification; or (c) decision sciences to manage tradeoffs and promote best practices among diverse stakeholders. Third, they will participate in a new graduate learning community to consist of a two-year series of workshops that focus in alternate years on the context of the Midwest agricultural FEW nexus and professional development; and fourth, they will have small-group experiences to promote collaboration and peer review. Each trainee will create and curate a portfolio that combines artifacts from coursework and research with reflections on the broader impacts of their work. Trainee recruitment emphasizes women and underrepresented groups.« less
  5. Abstract

    After decades of declining cropland area, the United States (US) experienced a reversal in land use/land cover change in recent years, with substantial grassland conversion to cropland in the US Midwest. Although previous studies estimated soil carbon (C) loss due to cropland expansion, other important environmental indicators, such as soil erosion and nutrient loss, remain largely unquantified. Here, we simulated the environmental impacts from the conversion of grassland to corn and soybeans for 12 US Midwestern states using the EPIC (Environmental Policy Integrated Climate) model. Between 2008 and 2016, over 2 Mha of grassland were converted to crop production in these states, with much less cropland concomitantly abandoned or retired from production. The net grassland-cropland conversion increased annual soil erosion by 7.9%, nitrogen (N) loss by 3.7%, and soil organic carbon loss by 5.6% relative to that of existing cropland, despite an associated increase in cropland area of only 2.5%. Notably, the above estimates represent the scenario of converting unmanaged grassland to tilled corn and soybeans, and impacts varied depending upon crop type and tillage regime. Corn and soybeans are dominant biofuel feedstocks, yet the grassland conversion and subsequent environmental impacts simulated in this study are likely not attributablemore »solely to biofuel-driven land use change since other factors also contribute to corn and soybean prices and land use decisions. Nevertheless, our results suggest grassland conversion in the Upper Midwest has resulted in substantial degradation of soil quality, with implications for air and water quality as well. Additional conservation measures are likely necessary to counterbalance the impacts, particularly in areas with high rates of grassland conversion (e.g. the Dakotas, southern Iowa).

    « less