Abstract Number: 327
Working Group: Aerosol Chemistry
Abstract
Low-pH aerosols comprise a large fraction of atmospheric fine particulate matter. The effects of pH on secondary organic aerosol (SOA) formation are not well understood, in part because of the difficulty of accurately measuring aerosol pH. Of particular interest are the atmospherically-abundant isoprene epoxydiols (IEPOX), which undergo acid-driven reactions to form SOA. Models have assumed no upper limit for IEPOX-SOA formation rates as acidity increases. However, recent work has shown that organosulfate formation from IEPOX slows as the equilibrium of inorganic sulfate (Sulfinorg) shifts from sulfate (SO42-) towards bisulfate (HSO4-), which is a weaker nucleophile. We performed a series of trans-ß-IEPOX uptake experiments with ammonium sulfate seed solutions acidified to between pH 0 and 3, and modelled time-resolved methyltetrol (MT) and methyltetrol sulfate (MTS) formation and Sulfinorg consumption (kMT = 0.018 M-2 s-1, kMTS = 0.28 M-2 s-1). We found an inflection point between pH 1 and 1.4, below which MT formation dominates and above which MTS formation dominates, consistent with a changing balance of protonated and deprotonated Sulfinorg. Modelled MT and MTS formation fit the experimental data well both above and below the inflection point except at pH 1.4, where it significantly underpredicted the data at low initial IEPOX/Sulfinorg ratios. This indicates multi-phase chemical dynamics beyond those represented in our model, leading to very efficient IEPOX-SOA formation at pH 1.4. Further investigation is warranted into the connection of IEPOX-SOA formation with initial IEPOX/Sulfinorg ratio and aerosol pH.
more »
« less
This content will become publicly available on October 2, 2024
Formation Kinetics of Isoprene Epoxydiol-Derived Secondary Organic Aerosol Are Altered Near the Sulfate/Bisulfate pKa
Low-pH aerosols comprise a large fraction of atmospheric fine particulate matter. The effects of pH on secondary organic aerosol (SOA) formation are not well understood, in part because of the difficulty of accurately measuring aerosol pH. Of particular interest are the atmospherically-abundant isoprene epoxydiols (IEPOX), which undergo acid-driven reactions to form SOA. Models have assumed no upper limit for IEPOX-SOA formation rates as acidity increases. However, recent work has shown that organosulfate formation from IEPOX slows as the equilibrium of inorganic sulfate (Sulfinorg) shifts from sulfate (SO42-) towards bisulfate (HSO4-), which is a weaker nucleophile. We performed a series of trans-ß-IEPOX uptake experiments with ammonium sulfate seed solutions acidified to between pH 0 and 3, and modelled time-resolved methyltetrol (MT) and methyltetrol sulfate (MTS) formation and Sulfinorg consumption (kMT = 0.018 M-2 s-1, kMTS = 0.28 M-2 s-1). We found an inflection point between pH 1 and 1.4, below which MT formation dominates and above which MTS formation dominates, consistent with a changing balance of protonated and deprotonated Sulfinorg. Modelled MT and MTS formation fit the experimental data well both above and below the inflection point except at pH 1.4, where it significantly underpredicted the data at low initial IEPOX/Sulfinorg ratios. This indicates multi-phase chemical dynamics beyond those represented in our model, leading to very efficient IEPOX-SOA formation at pH 1.4. Further investigation is warranted into the connection of IEPOX-SOA formation with initial IEPOX/Sulfinorg ratio and aerosol pH.
more »
« less
- Award ID(s):
- 2001027
- NSF-PAR ID:
- 10486827
- Publisher / Repository:
- AAAR
- Date Published:
- Journal Name:
- 41st Meeting AAAR
- Format(s):
- Medium: X
- Location:
- Portland,
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Oxidation of isoprene, the biogenic volatile organic compound with the highest emissions globally, is a large source of secondary organic aerosol (SOA) in the atmosphere. Organosulfates, particularly methyltetrol sulfates, formed from acid-driven reactions of isoprene epoxydiols (IEPOX), a key oxidation product, are important contributors to SOA mass. To date, most studies have focused on organosulfate formation on ammonium sulfate particles at low pH. However, recent work has shown sea spray aerosol (SSA) in the accumulation mode (~100 nm) is often quite acidic (pH ~ 2) and IEPOX-derived organosulfates have been identified in marine environments. Herein, we demonstrate that substantial SOA, including organosulfates, are formed on acidic sodium sulfate particles (pH = 1.3), representative of marine aerosol heterogeneously reacting with H2SO4 to form Na2SO4. For acidic sodium and ammonium sulfate particles, 31 and 28% (±1%), respectively, of inorganic sulfate is incorporated into organosulfate species, even though acidic particles with sodium versus ammonium as the primary cation formed 5% (±0.2) less SOA volume and 45% (±6%) less methyltetrol sulfates, suggesting other organosulfates may form. Even though both exhibited core-shell morphology after IEPOX uptake, physicochemical differences were observed via Raman microspectroscopy, with organosulfates identified in both the core and shell of acidic ammonium sulfate SOA particles, but only in the core for acidic sodium sulfate SOA via Raman microspectroscopy. Our results suggest that isoprene-derived SOA formed on aged SSA is potentially an important, but underappreciated, source of SOA and organosulfates in marine and coastal regions and could modify SOA budgets in these environments.more » « less
-
Oxidation of isoprene, the biogenic volatile organic compound with the highest emissions globally, is a large source of secondary organic aerosol (SOA) in the atmosphere. Organosulfates, particularly methyltetrol sulfates formed from acid-driven reactions of the oxidation product isoprene epoxydiol (IEPOX) onto particulate sulfate, are important contributors to SOA mass. To date, most studies have focused on organosulfate formation on ammonium sulfate particles at low pH. However, recent work has shown that sea spray aerosol (SSA) in the accumulation mode (~100 nm) is often quite acidic (pH ~ 2). Marine biota are well-established sources of isoprene, with annual global oceanic fluxes of isoprene estimated to range from 1-12 Tg, and IEPOX-derived organosulfates have been identified in marine environments. Herein, we demonstrate that substantial SOA, including organosulfates, are formed on acidic sodium sulfate particles, representative of marine aerosol heterogeneously reacting with H2SO4 to form Na2SO4. We compare SOA formed from the reactive uptake of IEPOX onto particulate sulfate and find that the cation (sodium vs. ammonium) impacts the physical properties and chemical composition of the SOA formed. Additionally, we investigate the formation of SOA derived from sodium sulfate based on key properties including particle acidity and the extent of exposure to oxidation via OH radicals. Our results suggest that isoprene-derived SOA formed on aged SSA is potentially an important, but underappreciated, source of SOA and organosulfates in marine and coastal regions and could modify SOA budgets and composition in these environments.more » « less
-
Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM 2.5 ). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS). However, both techniques have limitations in explicitly resolving and quantifying polar SOA constituents due either to thermal degradation or poor separation. With authentic 2-methyltetrol and methyltetrol sulfate standards synthesized in-house, we developed a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass spectrometry (QTOFMS) protocol that can chromatographically resolve and accurately measure the major IEPOX-derived SOA constituents in both laboratory-generated SOA and atmospheric PM 2.5 . 2-Methyltetrols were simultaneously resolved along with 4–6 diastereomers of methyltetrol sulfate, allowing efficient quantification of both major classes of SOA constituents by a single non-thermal analytical method. The sum of 2-methyltetrols and methyltetrol sulfates accounted for approximately 92%, 62%, and 21% of the laboratory-generated β-IEPOX aerosol mass, laboratory-generated δ-IEPOX aerosol mass, and organic aerosol mass in the southeastern U.S., respectively, where the mass concentration of methyltetrol sulfates was 171–271% the mass concentration of methyltetrol. Mass concentrations of methyltetrol sulfates were 0.39 and 2.33 μg m −3 in a PM 2.5 sample collected from central Amazonia and the southeastern U.S., respectively. The improved resolution clearly reveals isomeric patterns specific to methyltetrol sulfates from acid-catalyzed multiphase chemistry of β- and δ-IEPOX. We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C 5 -alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3-methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS.more » « less
-
Isoprene has a strong effect on the oxidative capacity of the troposphere due to its abundance. Under low-NOx conditions, isoprene oxidizes to form isoprene-derived epoxydiols (IEPOX), contributing significantly to secondary organic aerosol (SOA) through heterogeneous reactions. In particular, organosulfates (OSs) can form from acid-driven reactive uptake of IEPOX onto preexisting particles followed by nucleophilic addition of inorganic sulfate, and they are an important component of SOA mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of SOA and OS evolution in particles, including the formation of new compounds by oxidation as well as corresponding viscosity changes, is limited, particularly across relative humidity (RH) conditions above and below the deliquescence of typical sulfate aerosol particles. In a 2-m3 indoor chamber held at various RH values (30 – 80%), SOA was generated from reactive uptake of gas-phase IEPOX onto acidic ammonium sulfate aerosols (pH = 0.5 – 2.5) and then aged in an oxidation flow reactor (OFR) for 0 – 24 days of equivalent atmospheric ·OH exposure. We investigated the extent of inorganic sulfate conversion to organosulfate, formation of oligomers, single-particle physicochemical properties, such as viscosity and phase state, and oxidation kinetics. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of RH, oxidant exposure times, and particle acidity to better understand SOA and OS formation and destruction mechanisms in the ambient atmosphere.more » « less