We say a null-homologous knot in a -manifold has Property G, if the Thurston norm and fiberedness of the complement of is preserved under the zero surgery on . In this paper, we will show that, if the smooth -genus of (in a certain homology class) in , where is a rational homology sphere, is smaller than the Seifert genus of , then has Property G. When the smooth -genus is , can be taken to be any closed, oriented -manifold.
more »
« less
Performance of the Gittins policy in the G/G/1 and G/G/k, with and without setup times
More Like this
-
-
Abstract Let be a simple algebraic group over an algebraically closed field . Let be a finite group acting on . We classify and compute the local types of ‐bundles on a smooth projective ‐curve in terms of the first nonabelian group cohomology of the stabilizer groups at the tamely ramified points with coefficients in . When , we prove that any generically simply connected parahoric Bruhat–Tits group scheme can arise from a ‐bundle. We also prove a local version of this theorem, that is, parahoric group schemes over the formal disc arise from constant group schemes via tamely ramified coverings.more » « less
An official website of the United States government

