skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2307008

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of scheduling to minimize asymptotic tail latency in an M/G/1 queue with unknown job sizes. When the job size distribution is heavy-tailed, numerous policies that do not require job size information (e.g. Processor Sharing, Least Attained Service) are known to be strongly tail optimal, meaning that their response time tail has the fastest possible asymptotic decay. In contrast, for light-tailed size distributions, only in the last few years have policies been developed that outperform simple First-Come First-Served (FCFS). The most recent of these is γ-Boost, which achieves strong tail optimality in the light-tailed setting. But thus far, all policies that outperform FCFS in the light-tailed setting, including γ-Boost, require known job sizes. In this paper, we design a new scheduling policy that achieves strong tail optimality in the light-tailed M/G/1 with unknown job sizes. Surprisingly, the optimal policy turns out to be a variant of the Gittins policy, but with a novel and unusual feature: it uses a negative discount rate. Our work also applies to systems with partial information about job sizes, covering γ-Boost as an extreme case when job sizes are in fact fully known. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  2. Preemptive scheduling policies, which allow pausing jobs mid-service, are ubiquitous because they allow important jobs to receive service ahead of unimportant jobs that would otherwise delay their completion. The canonical example is Shortest Remaining Processing Time (SRPT), which preemptively serves the job with least remaining work at every moment in time [9]. There is a robust literature analyzing response time (elapsed time between a job's arrival and completion) in the M/G/1 queue under many preemptive policies [6, 10, 11], shedding light on questions such as how preemption affects the mean and tail of response time, and whether preemption is unfair towards low-priority jobs. 
    more » « less
  3. Service level objectives (SLOs) for queueing systems typically relate to the tail of the system's response time distribution T. The tail is the function mapping a time t to the probability P[T > t]. SLOs typically ask that high percentiles of T are not too large, i.e. that P[T > t] is small for large t. 
    more » « less
  4. Priority queues are well understood in queueing theory. However, they are somewhat restrictive in that the low-priority customers suffer far greater waiting times than the highpriority customers. In this short paper, we introduce a novel generalization of a two-class priority queue, which we call Hybrid. We prove that Hybrid has a much broader achievability region than strict priority, allowing for a much greater range of waiting time pairs. We demonstrate settings where this new flexibility can increase the revenue obtained by a service system (like airport TSA) selling priority. 
    more » « less
  5. We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a job's response time exceeds t, decay as quickly as possible in the t \to \infty limit. For some time, the best known policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ C e^-γ t . FCFS achieves the optimal decay rate γ, but its tail constant C is suboptimal. Only recently have policies that improve upon FCFS's tail constant been discovered. But it is unknown what the optimal tail constant is, let alone what policy might achieve it. In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce γ-Boost, a new policy that achieves this optimal tail constant. Roughly speaking, γ-Boost operates similarly to FCFS, but it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response time of small jobs without unduly delaying large jobs, improving upon FCFS's tail constant by up to 50% with only moderate job size variability, with even larger improvements for higher variability. While these results are for systems with full job size information, we also introduce and analyze a version of γ-Boost that works in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we show via simulation that γ-Boost has excellent practical performance. 
    more » « less
  6. Dispatching systems, where arriving jobs are immediately assigned to one of multiple queues, are ubiquitous in computer systems and service systems. A natural and practically relevant model is one in which each queue serves jobs in FCFS (First-Come First-Served) order. We consider the case where the dispatcher is size-aware, meaning it learns the size (i.e. service time) of each job as it arrives; and state-aware, meaning it always knows the amount of work (i.e. total remaining service time) at each queue. While size- and state-aware dispatching to FCFS queues has been extensively studied, little is known about optimal dispatching for the objective of minimizing mean delay. A major obstacle is that no nontrivial lower bound on mean delay is known, even in heavy traffic (i.e. the limit as load approaches capacity). This makes it difficult to prove that any given policy is optimal, or even heavy-traffic optimal. In this work, we propose the first size- and state-aware dispatching policy that provably minimizes mean delay in heavy traffic. Our policy, called CARD (Controlled Asymmetry Reduces Delay), keeps all but one of the queues short, then routes as few jobs as possible to the one long queue. We prove an upper bound on CARD's mean delay, and we prove the first nontrivial lower bound on the mean delay of any size- and state-aware dispatching policy. Both results apply to any number of servers. Our bounds match in heavy traffic, implying CARD's heavy-traffic optimality. In particular, CARD's heavy-traffic performance improves upon that of LWL (Least Work Left), SITA (Size Interval Task Assignment), and other policies from the literature whose heavy-traffic performance is known. 
    more » « less
  7. We consider scheduling in the M/G/1 queue with unknown job sizes. It is known that the Gittins policy minimizes mean response time in this setting. However, the behavior of the tail of response time under Gittins is poorly understood, even in the large-response-time limit. Characterizing Gittins’s asymptotic tail behavior is important because if Gittins has optimal tail asymptotics, then it simultaneously provides optimal mean response time and good tail performance. In this work, we give the first comprehensive account of Gittins’s asymptotic tail behavior. For heavy-tailed job sizes, we find that Gittins always has asymptotically optimal tail. The story for light-tailed job sizes is less clear-cut: Gittins’s tail can be optimal, pessimal, or in between. To remedy this, we show that a modification of Gittins avoids pessimal tail behavior, while achieving near-optimal mean response time. 
    more » « less