Abstract Let$${\mathbf {x}}_{n \times n}$$be an$$n \times n$$matrix of variables, and let$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$$be the polynomial ring in these variables over a field$${\mathbb {F}}$$. We study the ideal$$I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$$generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$is the generating function of permutations in$${\mathfrak {S}}_n$$by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space ofk-local permutation statistics. We also calculate the structure of$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$as a graded$${\mathfrak {S}}_n \times {\mathfrak {S}}_n$$-module. 
                        more » 
                        « less   
                    
                            
                            New lower bounds for matrix multiplication and
                        
                    
    
            Abstract Let$$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$$denote the matrix multiplication tensor (and write$$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$$), and let$$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$$denote the determinant polynomial considered as a tensor. For a tensorT, let$$\underline {\mathbf {R}}(T)$$denote its border rank. We (i) give the first hand-checkable algebraic proof that$$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$$, (ii) prove$$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$$and$$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was$$M_{\langle 2\rangle }$$, (iii) prove$$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$$, (iv) prove$$\underline {\mathbf {R}}(\operatorname {det}_3)=17$$, improving the previous lower bound of$$12$$, (v) prove$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$$for all$$\mathbf {n}\geq 25$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$$was known, as well as lower bounds for$$4\leq \mathbf {n}\leq 25$$, and (vi) prove$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$$for all$$\mathbf {n} \ge 18$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$$was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, calledborder apolaritydeveloped by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensorTand an integerr, in a finite number of steps, either outputs that there is no border rankrdecomposition forTor produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable whenThas a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203618
- PAR ID:
- 10486993
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 11
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Define theCollatz map$${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$$on the positive integers$$\mathbb {N}+1 = \{1,2,3,\dots \}$$by setting$${\operatorname {Col}}(N)$$equal to$$3N+1$$whenNis odd and$$N/2$$whenNis even, and let$${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$$denote the minimal element of the Collatz orbit$$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $$. The infamousCollatz conjectureasserts that$${\operatorname {Col}}_{\min }(N)=1$$for all$$N \in \mathbb {N}+1$$. Previously, it was shown by Korec that for any$$\theta> \frac {\log 3}{\log 4} \approx 0.7924$$, one has$${\operatorname {Col}}_{\min }(N) \leq N^\theta $$for almost all$$N \in \mathbb {N}+1$$(in the sense of natural density). In this paper, we show that foranyfunction$$f \colon \mathbb {N}+1 \to \mathbb {R}$$with$$\lim _{N \to \infty } f(N)=+\infty $$, one has$${\operatorname {Col}}_{\min }(N) \leq f(N)$$for almost all$$N \in \mathbb {N}+1$$(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a$$3$$-adic cyclic group$$\mathbb {Z}/3^n\mathbb {Z}$$at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.more » « less
- 
            Abstract For$$E \subset \mathbb {N}$$, a subset$$R \subset \mathbb {N}$$isE-intersectiveif for every$$A \subset E$$having positive relative density,$$R \cap (A - A) \neq \varnothing $$. We say thatRischromatically E-intersectiveif for every finite partition$$E=\bigcup _{i=1}^k E_i$$, there existsisuch that$$R\cap (E_i-E_i)\neq \varnothing $$. When$$E=\mathbb {N}$$, we recover the usual notions of intersectivity and chromatic intersectivity. We investigate to what extent the known intersectivity results hold in the relative setting when$$E = \mathbb {P}$$, the set of primes, or other sparse subsets of$$\mathbb {N}$$. Among other things, we prove the following: (1) the set of shifted Chen primes$$\mathbb {P}_{\mathrm {Chen}} + 1$$is both intersective and$$\mathbb {P}$$-intersective; (2) there exists an intersective set that is not$$\mathbb {P}$$-intersective; (3) every$$\mathbb {P}$$-intersective set is intersective; (4) there exists a chromatically$$\mathbb {P}$$-intersective set which is not intersective (and therefore not$$\mathbb {P}$$-intersective).more » « less
- 
            Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$.more » « less
- 
            Abstract Let$${{\mathcal {H}}}$$be a stratum of translation surfaces with at least two singularities, let$$m_{{{\mathcal {H}}}}$$denote the Masur-Veech measure on$${{\mathcal {H}}}$$, and let$$Z_0$$be a flow on$$({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$$obtained by integrating a Rel vector field. We prove that$$Z_0$$is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces$$({\mathcal L}, m_{{\mathcal L}})$$, where$${\mathcal L} \subset {{\mathcal {H}}}$$is an orbit-closure for the action of$$G = \operatorname {SL}_2({\mathbb {R}})$$(i.e., an affine invariant subvariety) and$$m_{{\mathcal L}}$$is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of$$Z_0$$with respect to any of the measures$$m_{{{\mathcal L}}}$$is zero.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    