skip to main content


Title: Modeling the Simultaneous Dropout of Energetic Electrons and Protons by Magnetopause Shadowing
Abstract

Magnetopause shadowing (MPS) effect could drive a concurrent dropout of radiation belt electrons and ring current protons. However, its relative role in the dropout of both plasma populations has not been well quantified. In this work, we study the simultaneous dropout of MeV electrons and 100s keV protons during an intense geomagnetic storm in May 2017. A radial diffusion model with an event‐specific last closed drift shell is used to simulate the MPS loss of both populations. The model well captures the fast shadowing loss of both populations atL* > 4.6, while the loss atL* < 4.6, possibly due to the electromagnetic ion cyclotron wave scattering, is not captured. The observed butterfly pitch angle distributions of electron fluxes in the initial loss phase are well reproduced by the model. The initial proton losses at low pitch angles are underestimated, potentially also contributed by other mechanisms such as field line curvature scattering.

 
more » « less
Award ID(s):
1752736
NSF-PAR ID:
10487039
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyzed the contribution of electromagnetic ion cyclotron (EMIC) wave driven electron loss to a flux dropout event in September 2017. The evolution of electron phase space density (PSD) through the dropout showed the formation of a radially peaked PSD profile as electrons were lost at highL*, resembling distributions created by magnetopause shadowing. By comparing 2D Fokker Planck simulations of pitch angle diffusion to the observed change in PSD, we found that theμandKof electron loss aligned with maximum scattering rates at dropout onset. We conclude that, during this dropout event, EMIC waves produced substantial electron loss. Because pitch angle diffusion occurred on closed drift paths near the last closed drift shell, no radial PSD minimum was observed. Therefore, the radial PSD gradients resembled solely magnetopause shadowing loss, even though the local pitch angle scattering produced electron losses of several orders of magnitude of the PSD.

     
    more » « less
  2. Abstract

    To investigate the role of atmospheric collisions and cosmic ray albedo neutron decay (CRAND) in the dynamics of energetic electrons in the Earth's inner radiation belt during geomagnetic quiet times, a drift‐collision‐source model that includes azimuthal drift, pitch angle diffusion from elastic collision, energy loss from inelastic collision, and a CRAND source is developed. In the model, the bounce‐averaged pitch angle diffusion coefficients and energy loss rates are calculated based on scattering of electrons with neutrals given by the NRLMSISE‐00 model and with ions and electrons given by International Reference Ionosphere (IRI) 2012 model. The electron source rate from CRAND follows the recently developed drift‐source model in Xiang et al. (2019). For 304‐keV quasi‐trapped electrons atL= 1.25, simulation results with CRAND show good agreement with Detection of Electro‐Magnetic Emissions Transmitted from Earthquake Regions satellite observations, confirming that CRAND is the main source for these quasi‐trapped electrons, in contrast to the previous understanding that these quasi‐trapped electrons were formed by wide‐angle scattering of the trapped populations. For trapped electrons, 153, 304, and 509 keV atL< 1.3, the simulation results with only azimuthal drift and atmospheric collisions show a much quicker decrease than observations, while simulation results including a CRAND source are generally comparable to the observations, suggesting that CRAND is an important source of trapped hundreds of kiloelectron‐volt electrons atL< 1.3 during quiet times and provides a baseline for the electron flux even during active times as well. Furthermore, these results suggest that actual radial diffusion rates in the inner belt are lower than previous estimates in which CRAND contributions were not considered.

     
    more » « less
  3. Abstract

    Last closed drift shell (LCDS) has been identified as a crucial parameter for investigating the magnetopause shadowing loss of radiation belt electrons. However, drift orbit bifurcation (DOB) effects have not been physically incorporated into the LCDS calculation. Here we calculate event‐specific LCDS using different approaches to dealing with the DOB effects, that is, tracing field lines ignoring DOB, tracing test particles rejecting field lines with DOB, and tracing particles including field lines with DOB, and then incorporate them into a radial diffusion model to simulate the fast electron dropout observed by Van Allen Probes in May 2017. The model effectively captures the fast dropout at highL*and exhibits the best agreement with data when LCDS is calculated by tracing test particles with DOB more physically included. This study represents the first quantitative modeling of the DOB effects on radiation belt magnetopause shadowing loss via a more physical specification of LCDS.

     
    more » « less
  4. Abstract

    Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 Lshells) with similar patterns between satellites.

     
    more » « less
  5. Abstract

    The very‐low frequency (VLF) and low frequency (LF) waves from ground transmitters propagate in the ionospheric waveguide, and a portion of their power leaks to the Earth's inner radiation belt and slot region where it can cause electron precipitation loss. Using Van Allen Probes observations, we perform a survey of the VLF and LF transmitter waves at frequencies from 14 to 200 kHz. The statistical electric and magnetic wave amplitudes and frequency spectra are obtained at 1 < L < 3. Based on a recent study on the propagation of VLF transmitter waves, we divide the total wave power into ducted and unducted portions, and model the wave normal angle of unducted waves with dependences onLshell, magnetic latitude, and wave frequency. At lower frequencies, the unducted waves are launched along the vertical direction and the wave normal angle increases during the propagation until reaching the Gendrin angle; at higher frequencies, the normal angle of unducted waves follows the variation of Gendrin angle. We calculate the bounce‐averaged pitch angle and momentum diffusion coefficients of electrons due to ducted and unducted VLF and LF waves. Unducted and ducted waves cause efficient pitch angle scattering atL = 1.5 and 2.5, respectively. Although the wave power from ground transmitters at frequencies higher than 30 kHz is low, these waves can cause the pitch angle scattering of lower energy (2–200 keV atL = 1.5) electrons, which cannot resonate with the VLF transmitter waves at frequencies below 30 kHz, lightning generated whistlers, or plasmaspheric hiss.

     
    more » « less