Estimation of uncertainties (random error statistics) of radio occultation (RO) observations is important for their effective assimilation in numerical weather prediction (NWP) models. Average uncertainties can be estimated for large samples of RO observations and these statistics may be used for specifying the observation errors in NWP data assimilation. However, the uncertainties of individual RO observations vary, and so using average uncertainty estimates will overestimate the uncertainties of some observations and underestimate those of others, reducing their overall effectiveness in the assimilation. Several parameters associated with RO observations or their atmospheric environments have been proposed to estimate individual RO errors. These include the standard deviation of bending angle (BA) departures from either climatology in the upper stratosphere and lower mesosphere (STDV) or the sample mean between 40 and 60 km (STD4060), the local spectral width (LSW), and the magnitude of the horizontal gradient of refractivity (|∇
These results contribute to the understanding of the sources of uncertainties in radio occultation observations. They could be used to improve the effectiveness of these observations in their assimilation into numerical weather prediction and reanalysis models by improving the estimation of their observational errors.