Rapid sediment accumulation rates (SAR) in a fan delta situated on the rapidly uplifting footwall of the Taormina normal fault in NE Sicily preserves a rare record of earthquakes and base level change for a tightly coupled source to sink system. We use this sedimentary archive to reconstruct the kinematics and slip history of the fault and further an understanding of how tectonic forcing across various scales are encoded in stratigraphy. A revised luminescence-based age model indicates that ~82 m of the Pagliara fan-delta foreset facies was deposited in ~11 ka at a mean SAR of ~0.74 cm/yr during MIS 7. Syn-depositional terrestrial cosmogenic nuclide (TCN) determined paleoerosion rates of 0.91±0.12 mm/yr and 1.31 ±0.61 mm/yr are similar to published modern erosion rates for the Pagliara basin of 0.97 ±0.11 mm/yr. At the stratigraphic scale, a time series of magnetic susceptibility (c) sampled at 1 m intervals in the foresets displays four ~2,800 yr / 20 m-thick cycles of growing c, bounded by sharp decreases that do not coincide with changes in sediment texture. The c of the low-grade metamorphic bedrock in the source is 20-100 times weaker than the c of rubified soils mantling the hillslopes, which is comparable to the c of the delta sediments. We propose that large, bedrock-cored landslides quasi-periodically deliver weak c sediment to the delta that dilutes a c signal otherwise dominated by the stripping of soil-mantled hillslopes. We propose that centennial-scale recurrence interval earthquakes are most capable at triggering a basin-scale landslide only after channel incision has increased relief of hillslopes to the threshold condition, which requires millennia to achieve. At the landscape scale of delta geometry and location, the Pagliara delta accumulated in a hanging wall basin that has since been inverted. We reconstruct the history of base level fall for the delta from an inversion of fluvial topography and apportion that record to its rock uplift, delta deposition, and eustatic components. We show that footwall uplift has been unsteady over the past 600 ka ranging from -1 to 3 mm/yr. The integration of our stratigraphic- and landscape scale observations furthers our understanding of the natural hazards related to normal fault earthquakes and their impact on sediment dynamics in this steep, active tectonic setting. 
                        more » 
                        « less   
                    
                            
                            Integrated uplift, subsidence, erosion and deposition in a tightly coupled source‐to‐sink system, Pagliara basin, northeastern Sicily, Italy
                        
                    
    
            Abstract How tectonic forcing, expressed as base level change, is encoded in the stratigraphic and geomorphic records of coupled source‐to‐sink systems remains uncertain. Using sedimentological, geochronological and geomorphic approaches, we describe the relationship between transient topographic change and sediment deposition for a low‐storage system forced by rapid rock uplift. We present five new luminescence ages and two terrestrial cosmogenic nuclide paleo‐erosion rates for the late Pleistocene Pagliara fan‐delta complex and we model corresponding base level fall history and erosion of the source catchment located on the Ionian flank of the Peloritani Mountains (NE‐Sicily, Italy). The Pagliara delta complex is part of the broader Messina Gravel‐and‐Sands lithostratigraphic unit that outcrops along the Peloritani coastal belt as extensional basins have been recently inverted by both normal faults and regional uplift at the Messina Straits. The deltas exposed at the mouth of the Pagliara River have constructional tops at ca. 300 m a.s.l. and onlap steeply east‐dipping bedrock at the coast to thickness between ca. 100 and 200 m. Five infrared‐stimulated luminescence (IRSL) ages collected from the delta range in age from ca. 327 to 208 ka and indicate a vertical long‐term sediment accumulation rate as rapid as ca. 2.2 cm/yr during MIS 7. Two cosmogenic10Be concentrations measured in samples of delta sediment indicate paleo‐erosion rates during MIS 8–7 near or slightly higher than the modern rates of ca. 1 mm/yr. Linear inversion of Pagliara fluvial topography indicates an unsteady base level fall history in phase with eustasy that is superimposed on a longer, tectonically driven trend that doubled in rate from ca. 0.95 to 1.8 mm/yr in the past 150 ky. The combination of footwall uplift rate and eustasy determines the accommodation space history to trap the fan‐deltas at the Peloritani coast in hanging wall basins, which are now inverted, uplifted and exposed hundreds of metres above the sea level. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10487099
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Basin Research
- Volume:
- 36
- Issue:
- 1
- ISSN:
- 0950-091X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The quantification of rates for the competing forces of tectonic uplift and erosion has important implications for understanding topographic evolution. Here, we quantify the complex interplay between tectonic uplift, topographic development, and erosion recorded in the hanging walls of several active reverse faults in the Ventura basin, southern California, USA. We use cosmogenic 26Al/10Be isochron burial dating and 10Be surface exposure dating to construct a basin-wide geochronology, which includes burial dating of the Saugus Formation: an important, but poorly dated, regional Quaternary strain marker. Our ages for the top of the exposed Saugus Formation range from 0.36 +0.18/-0.22 Ma to 1.06 +0.23/-0.26 Ma, and our burial ages near the base of shallow marine deposits, which underlie the Saugus Formation, increase eastward from 0.60 +0.05/-0.06 Ma to 3.30 +0.30/-0.41 Ma. Our geochronology is used to calculate rapid long-term reverse fault slip rates of 8.6–12.6 mm yr–1 since ca. 1.0 Ma for the San Cayetano fault and 1.3–3.0 mm yr–1 since ca. 1.0 Ma for the Oak Ridge fault, which are both broadly consistent with contemporary reverse slip rates derived from mechanical models driven by global positioning system (GPS) data. We also calculate terrestrial cosmogenic nuclide (TCN)-derived, catchment-averaged erosion rates that range from 0.05–1.14 mm yr–1 and discuss the applicability of TCN-derived, catchment-averaged erosion rates in rapidly uplifting, landslide-prone landscapes. We compare patterns in erosion rates and tectonic rates to fluvial response times and geomorphic landscape parameters to show that in young, rapidly uplifting mountain belts, catchments may attain a quasi-steady-state on timescales of <105 years even if catchment-averaged erosion rates are still adjusting to tectonic forcing.more » « less
- 
            Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle.more » « less
- 
            Abstract. Since the 1990s, analysis of cosmogenic nuclides, primarily 10Be, in quartz-bearing river sand, has allowed for quantitative determination of erosion rates at a basin scale. Paired measurements of in situ cosmogenic 26Al and 10Be in sediment are less common but offers insight into the history of riverine sediment moving down slopes and through drainage basins. Prolonged sediment burial (>105 years), a violation of assumptions underlying erosion rate calculations, is indicated by higher 26Al-based than 10Be-based erosion rates due to preferential loss of shorter-lived 26Al by decay when quartz is shielded from cosmic rays. Here, we use a global compilation of 26Al and 10Be data generated from quartz-bearing fluvial sediment samples (n = 624, including 121 new measurements) and calculate the discordance between erosion rates derived from each nuclide. We test for correlations between such discordance and topographic metrics for drainage basins, allowing us to infer the likelihood of sediment burial during transport in different geomorphic settings. We find that nearly half of samples (n = 276) exhibit discordance (> 1σ uncertainty) between erosion rates derived from 10Be and 26Al, indicating sediment histories that must include extended burial during residence on hillslopes and/or in the fluvial system after or during initial near-surface exposure. Physical basin parameters such as basin area, slope, and tectonic activity exhibit significant correlation with erosion rate discordance whereas climatic parameters have little correlation. Our analysis suggests that 26Al/10Be erosion rate discordance occurs more regularly in basins larger than 1,000 km2, particularly when such basins have low average slopes and are in tectonically quiescent terrains. Sediment sourced from smaller, steeper basins in tectonically active regions is more likely to have similar 10Be and 26Al erosion rates indicative of limited storage and limited burial during residence in the hillslope and fluvial sediment system. The data and analysis we present demonstrate that paired 26Al and 10Be analyses in detrital fluvial samples can provide a window into watershed processes, elucidating landscape behavior at different spatial scales and allowing a deeper understanding of both sediment routing systems and whether erosion rate assumptions are violated. Large lowland basins are more likely to transport detrital sediment that has experienced prolonged sediment storage and burial either on hillslopes and/or in fluvial networks; thus, erosion rates from such basins are lower limits due to nuclide decay during storage. Conversely, samples from smaller upland basins are more likely to provide reliable erosion rates.more » « less
- 
            ABSTRACT Constraining time is of critical importance to evaluating the rates and relative contributions of processes driving landscape change in sedimentary basins. The geomorphic character of the field setting guides the application of geochronologic or instrumental tools to this problem, because the viability of methods can be highly influenced by geomorphic attributes. For example, sediment yield and the linked potential for organic preservation may govern the usefulness of radiocarbon dating. Similarly, the rate of sediment transport from source to sink may determine the maturity and/or light exposure of mineral grains arriving in the delta and thus the feasibility of luminescence dating. Here, we explore the viability and quirks of dating and instrumental methods that have been applied in the Bengal Basin, and review the records that they have yielded. This immense, dynamic, and spatially variable system hosts the world's most inhabited delta. Outlining a framework for successful chronologic applications is thus of value to managing water and sediment resources for humans, here and in other populated deltas worldwide. Our review covers radiocarbon dating, luminescence dating, archaeological records and historical maps, short‐lived radioisotopes, horizon markers and rod surface elevation tables, geodetic observations, and surface instrumentation. Combined, these tools can be used to reconstruct the history of the Bengal Basin from Late Pleistocene to present day. The growing variety and scope of Bengal Basin geochronology and instrumentation opens doors for research integrating basin processes across spatial and temporal scales. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
