skip to main content

This content will become publicly available on September 12, 2024

Title: Chronology and erosion rate of the Pinedale glaciation, Colorado Front Range (USA), inferred from the sedimentary record of glacial Lake Devlin

Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Bulletin
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrothermal explosions are significant potential hazards in Yellowstone National Park, Wyoming, USA. The northern Yellowstone Lake area hosts the three largest hydrothermal explosion craters known on Earth empowered by the highest heat flow values in Yellowstone and active seismicity and deformation. Geological and geochemical studies of eighteen sublacustrine cores provide the first detailed synthesis of the age, sedimentary facies, and origin of multiple hydrothermal explosion deposits. New tephrochronology and radiocarbon results provide a four-dimensional view of recent geologic activity since recession at ca. 15–14.5 ka of the >1-km-thick Pinedale ice sheet. The sedimentary record in Yellowstone Lake contains multiple hydrothermal explosion deposits ranging in age from ca. 13 ka to ~1860 CE. Hydrothermal explosions require a sudden drop in pressure resulting in rapid expansion of high-temperature fluids causing fragmentation, ejection, and crater formation; explosions may be initiated by seismicity, faulting, deformation, or rapid lake-level changes. Fallout and transport of ejecta produces distinct facies of subaqueous hydrothermal explosion deposits. Yellowstone hydrothermal systems are characterized by alkaline-Cl and/or vapor-dominated fluids that, respectively, produce alteration dominated by silica-smectite-chlorite or by kaolinite. Alkaline-Cl liquids flash to steam during hydrothermal explosions, producing much more energetic events than simple vapor expansion in vapor-dominated systems. Two enormous explosion events in Yellowstone Lake were triggered quite differently: Elliott’s Crater explosion resulted from a major seismic event (8 ka) that ruptured an impervious hydrothermal dome, whereas the Mary Bay explosion (13 ka) was triggered by a sudden drop in lake level stimulated by a seismic event, tsunami, and outlet channel erosion. 
    more » « less
  2. Abstract

    In tropical and sub‐tropical mixed siliciclastic–carbonate depositional systems, fluvial input andin situneritic carbonate interact over space and time. Despite being the subject of many studies, controls on partitioning of mixed sediments remains controversial. Mixed sedimentary records, from Ashmore Trough shelf edge and slopes (southern Gulf of Papua), are coupled with global sea‐level curves and anchored to Marine Isotope Stage stratigraphy to constrain models of sediment accumulation at two different timescales for the past 130 kyr: (i) 100 kyr scale for last glacial cycle; and (ii) millennial scale for last deglaciation. During the last glacial cycle, carbonate production and accumulation were primarily controlled by sea‐level fluctuations. Export of neritic carbonate to the slopes was initiated during re‐flooding of previously exposed reefs and continued during Marine Isotope Stage 5e and 1 interglacial sea‐level highs. Siliciclastic fluxes to the slope were controlled by interplay of sea level, shelf physiography and oceanic currents. Heterogeneous accumulation of siliciclastic mud on the slope, took place during Marine Isotope Stage 5d to Marine Isotope Stage 3 sea‐level fall. Siliciclastics reached adjacent depocentres during Marine Isotope Stage 2. Coralgal reef and oolitic–skeletal sand resumed at the shelf edge during the subsequent stepwise sea‐level rise of the last deglaciation. Contemporaneous, abrupt siliciclastic input from increased precipitation and fluvial discharge illustrates that climate controlled deglacial sedimentation. Siliciclastic input persisted untilca8.5 ka. Carbonate accumulation waned at the shelf edge afterca14 ka, whereas it increased on the slopes sinceca11.5 ka, when previously exposed reef and bank tops were re‐flooded. When comparing the last sea‐level cycle sedimentation patterns of the southern Gulf of Papua with other coeval mixed systems, sea level and shelf physiography emerge as primary controls on deposition at the 100 kyr scale. At the millennial scale, siliciclastic input was also controlled by climate change during the unstable atmospheric and oceanic conditions of the last deglaciation.

    more » « less
  3. Earth has sustained continental glaciation several times in its past. Because continental glaciers ground to low elevations, sedimentary records of ice contact can be preserved from regions that were below base level, or subject to subsidence. In such regions, glaciated pavements, ice-contact deposits such as glacial till with striated clasts, and glaciolacustrine or glaciomarine strata with dropstones reveal clear signs of former glaciation. But assessing upland (mountain) glaciation poses particular challenges because elevated regions typically erode, and thus have extraordinarily poor preservation potential. Here we propose approaches for detecting the former presence of glaciation in the absence or near-absence of ice-contact indicators; we apply this specifically to the problem of detecting upland glaciation, and consider the implications for Earth’s climate system. Where even piedmont regions are eroded, pro- and periglacial phenomena will constitute the primary record of upland glaciation. Striations on large (pebble and larger) clasts survive only a few km of fluvial transport, but microtextures developed on quartz sand survive longer distances of transport, and record high-stress fractures consistent with glaciation. Proglacial fluvial systems can be difficult to distinguish from non-glacial systems, but a preponderance of facies signaling abundant water and sediment, such as hyperconcentrated flood flows, non-cohesive fine-grained debris flows, and/or large-scale and coarse-grained cross-stratification are consistent with proglacial conditions, especially in combination with evidence for cold temperatures, such as rip-up clasts composed of noncohesive sediment, indicating frozen conditions, and/or evidence for a predominance of physical over chemical weathering. Other indicators of freezing (periglacial) conditions include frozen-ground phenomena such as fossil ice wedges and ice crystals. Voluminous loess deposits and eolian-marine silt/mudstone characterized by silt modes, a significant proportion of primary silicate minerals, and a provenance from non-silt precursors can indicate the operation of glacial grinding, even though such deposits may be far removed from the site(s) of glaciation. Ultimately, in the absence of unambiguous ice-contact indicators, inferences of glaciation must be grounded on an array of observations that together record abundant meltwater, temperatures capable of sustaining glaciation, and glacial weathering (e.g., glacial grinding). If such arguments are viable, they can bolster the accuracy of past climate models, and guide climate modelers in assessing the types of forcings that could enable glaciation at elevation, as well as the extent to which (extensive) upland glaciation might have influenced global climate. 
    more » « less
  4. Abstract

    Erosion of landscapes underlaid by permafrost can transform sediment and nutrient fluxes, surface and subsurface hydrology, soil properties, and rates of permafrost thaw, thus changing ecosystems and carbon emissions in high latitude regions with potential implications for global climate. However, future rates of erosion and sediment transport are difficult to predict as they depend on complex interactions between climatic and environmental parameters such as temperature, precipitation, permafrost, vegetation, wildfires, and hydrology. Thus, despite the potential influence of erosion on the future of the Arctic and global systems, the relations between erosion‐rate and these parameters, as well as their relative importance, remain largely unquantified. Here we quantify these relations based on a sedimentary record from Burial Lake, Alaska, one of the richest datasets of Arctic lake deposits. We apply a set of bi‐ and multi‐variate techniques to explore the association between the flux of terrigenous sediments into the lake (a proxy for erosion‐rate) and a variety of biogeochemical sedimentary proxies for paleoclimatic and environmental conditions over the past 25 cal ka BP. Our results show that erosion‐rate is most strongly associated with temperature and vegetation proxies, and that erosion‐rate decreases with increased temperature, pollen‐counts, and abundance of pollen from shrubs and trees. Other proxies, such as those associated with fire frequency, aeolian dust supply, mass wasting and hydrologic conditions, play a secondary role. The marginal effects of the sedimentary‐proxies on erosion‐rate are often threshold dependent, highlighting the potential for strong non‐linear changes in erosion in response to future changes in Arctic conditions.

    more » « less
  5. Abstract

    Direct measurements of erosional response to past climate change are scarce, but mid‐latitude landscapes can record how shifts between cold and warm periods altered erosion outside glacial margins. To study hillslope responses to periglaciation, we measured bulk geochemistry and cosmogenic10Be and26Al concentrations in colluvium and weathered bedrock in an 18 m regolith core from Bear Meadows, Pennsylvania, ∼100 km south of maximum glacial extent. Using core lithology, cosmogenic nuclide concentrations, and regional10Be‐derived erosion rates, we show the onset of 100‐Kyr glacial cycles at the Mid‐Pleistocene Transition (1.2–0.7 Ma) instigated multiple periglacial episodes in central Appalachia, increasing erosion rates compared to the relatively warmer Neogene. Our results show the higher efficiency of periglacial versus temperate erosion processes and highlight a pervasive Pleistocene periglacial erosion signal preserved in the10Be inventory of surface sediments in central Appalachia, where erosion rates are slow enough to integrate previous cold‐climate processes.

    more » « less