Abstract Achieving mobile liquid droplets on solid surfaces is crucial for various practical applications, such as self‐cleaning and anti‐fouling coatings. The last two decades have witnessed remarkable progress in designing functional surfaces, including super‐repellent surfaces and lubricant‐infused surfaces, which allow droplets to roll/slide on the surfaces. However, it remains a challenge to enable droplet motion on hydrophilic solid surfaces. In this work, we demonstrate mobile droplets containing ionic surfactants on smooth hydrophilic surfaces that are charged similarly to surfactant molecules. The ionic surfactant‐laden droplets display ultra‐low contact angle and ultra‐low sliding angle simultaneously on the hydrophilic surfaces. The sliding of the droplet is enabled by the adsorbed surfactant ahead of three‐phase contact line, which is regulated by the electrostatic interaction between ionic surfactant and charged solid surface. The droplet can maintain its motion even when the hydrophilic surface has defects. Furthermore, we demonstrate controlled manipulation of ionic surfactant‐laden droplets on hydrophilic surfaces with different patterns. We envision that our simple technique for achieving mobile droplets on hydrophilic surfaces can pave the way to novel slippery surfaces for different applications.
more »
« less
On‐Demand, Contact‐Less and Loss‐Less Droplet Manipulation via Contact Electrification
Abstract While there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks – complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on‐demand, contact‐less and loss‐less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion. Utilizing the contact electrification technique, contact‐less and loss‐less manipulation of polar and non‐polar liquid droplets on different surface chemistries and geometries is demonstrated. It is envisioned that the technique can pave the way to simple, inexpensive, and portable lab on a chip and point of care devices.
more »
« less
- Award ID(s):
- 1947454
- PAR ID:
- 10487118
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, reflection interference fringe (RIF) and transmission fringe (TIF) techniques have been introduced to investigate the origin of far-field interference fringe (IF) formation and to determine a droplet's contact angle and thickness by measuring the fringe radius. In this study, characteristics of the IF technique are analyzed based on the RIF and TIF by varying the schematics, such as configuration (transmission/reflection), the droplet's side (left-hand side/right-hand side), and the substrate types (flat/prism). The analysis also investigates the refraction effect at the droplet edge and the maximum incidence and contact angles. The schematic variation shows that the widest contact angle range can be measured in a transmission configuration with droplet's right-hand side, and that the fringe radius decreases with incidence angles on a prism substrate, consistent with the recent observation. Refraction at the droplet edge causes the fringe radius to increase or decrease depending on the degree of refraction. Based on the characteristics study, it is revealed that the IF technique can determine nanometer-scale thicknesses below 100 nm on droplets, corresponding to ultra-small contact angles of less than 0.01°, with an extended working distance of 3000 mm and an optimized incidence angle, assuming a spherical profile. This finding is significant, as it demonstrates that the nanoscale thickness can be determined in situ under ambient conditions using a simple optical configuration, without requiring a sophisticated setup, such as a microscope. It is anticipated that the IF technique can be combined with other nanoscale thickness measurement techniques to enhance its measurement reliability.more » « less
-
Abstract Frosting occurs due to the freezing of condensed water droplets on a supercooled surface. The nucleated frost propagates through interdroplet bridges and covers the entire surface, resulting from the deposition of highly supersaturated vapor surrounding tiny droplets. While inhibition of the formation of frost bridges is not possible, the propagation of frost can be delayed by effectively removing tiny droplets. Passive technologies, such as superhydrophobic surfaces (SHS) and hydrophobic slippery liquid‐infused porous surfaces (SLIPS), rely on static growth and direct contact with densely distributed droplets. However, use of these approaches in delaying frost propagation involves challenges, as the interdroplet distance remains small. Here, we report a new approach of spontaneous droplet movement on hydrophilic SLIPS to delay the formation of interdroplet frost bridges. Surface tension forces generated by the hydrophilic oil meniscus of a large water droplet efficiently pull neighboring droplets with a diameter of less than 20 μm from all directions. This causes a dynamic separation between water droplets and an adjacent frozen droplet. Such a process delays the formation and propagation of interdroplet frost bridges. Consequently, there is significant delay in frosting on hydrophilic SLIPS compared to those on SHS and hydrophobic SLIPS.more » « less
-
Altering soil wettability by inclusion of hydrophobicity could be an effective way to restrict evaporation from soil, thereby conserving water resources. In this study, 4-μL sessile water droplets were evaporated from an artificial soil millipore comprised of three glass (i.e. hydrophilic) and Teflon (i.e. hydrophobic) 2.38-mm-diameter beads. The distance between the beads were kept constant (i.e. center-to-center spacing of 3.1 mm). Experiments were conducted in an environmental chamber at an air temperature of 20°C and 30% and 75% relative humidity (RH). Evaporation rates were faster (i.e. ∼19 minutes and ∼49 minutes at 30% and 75% RH) from hydrophilic pores than the Teflon one (i.e. ∼24 minutes and ∼52 minutes at 30% and 75% RH) due in part to greater air-water contact area. Rupture of liquid droplets during evaporation was analyzed and predictions were made on rupture based on contact line pinning and depinning, projected surface area just before rupture, and pressure difference across liquid-vapor interface. It was observed that, in hydrophilic pore, the liquid droplet was pinned on one bead and the contact line on the other beads continuously decreased by deforming the liquid-vapor interface, though all three gas-liquid-solid contact lines decreased at a marginal rate in hydrophobic pore. For hydrophilic and hydrophobic pores, approximately 1.7 mm2 and 1.8–2 mm2 projected area of the droplet was predicted at 30% and 75% RH just before rupture occurs. Associated pressure difference responsible for rupture was estimated based on the deformation of curvature of liquid-vapor interface.more » « less
-
In this work, we use the immersed boundary method with four extensions to simulate a moving liquid–gas interface on a solid surface. We first define a moving contact line model and implements a static-dynamic friction condition at the immersed solid boundary. The dynamic contact angle is endogenous instead of prescribed, and the solid boundary can be non-stationary with respect to time. Second, we simulate both a surface tension force and a Young's force with one general equation that does not involve estimating local curvature. In the third extension, we splice liquid–gas interfaces to handle topological changes, such as the coalescence and separation of liquid droplets or gas bubbles. Finally, we re-sample liquid–gas interface markers to ensure a near-uniform distribution without exerting artificial forces. We demonstrate empirical convergence of our methods on non-trivial examples and apply them to several benchmark cases, including a slipping droplet on a wall and a rising bubble.more » « less
An official website of the United States government
