skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Simulating liquid–gas interfaces and moving contact lines with the immersed boundary method
In this work, we use the immersed boundary method with four extensions to simulate a moving liquid–gas interface on a solid surface. We first define a moving contact line model and implements a static-dynamic friction condition at the immersed solid boundary. The dynamic contact angle is endogenous instead of prescribed, and the solid boundary can be non-stationary with respect to time. Second, we simulate both a surface tension force and a Young's force with one general equation that does not involve estimating local curvature. In the third extension, we splice liquid–gas interfaces to handle topological changes, such as the coalescence and separation of liquid droplets or gas bubbles. Finally, we re-sample liquid–gas interface markers to ensure a near-uniform distribution without exerting artificial forces. We demonstrate empirical convergence of our methods on non-trivial examples and apply them to several benchmark cases, including a slipping droplet on a wall and a rising bubble.  more » « less
Award ID(s):
2108161 1646339
PAR ID:
10330490
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physics of fluids
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A thin liquid droplet spreads on a soft viscoelastic substrate with arbitrary rheology. Lubrication theory is applied to the governing field equations in the liquid and solid domains, which are coupled through the free boundary at the solid–liquid interface, to derive a set of reduced equations that describe the spreading dynamics. Fourier transform techniques and the finite difference method are used to construct a solution for the dynamic liquid–gas and solid–liquid interface shapes, as well as the macroscopic contact angle. Substrate properties affect the spreading dynamics through the contact angle and internal droplet flow fields, and these mechanisms are revealed. Increased substrate softness increases the spreading rate, whereas increased viscoelasticity decreases the spreading rate. For the case of a purely elastic substrate, the spreading power-law exponent recovers Tanner's law in the rigid limit and increases with substrate softness.

     
    more » « less
  2. We propose a novel solid-fluid coupling method to capture the subtle hydrophobic and hydrophilic interactions between liquid, solid, and air at their multi-phase junctions. The key component of our approach is a Lagrangian model that tackles the coupling, evolution, and equilibrium of dynamic contact lines evolving on the interface between surface-tension fluid and deformable objects. This contact-line model captures an ensemble of small-scale geometric and physical processes, including dynamic waterfront tracking, local momentum transfer and force balance, and interfacial tension calculation. On top of this contact-line model, we further developed a mesh-based level set method to evolve the three-phase T-junction on a deformable solid surface. Our dynamic contact-line model, in conjunction with its monolithic coupling system, unifies the simulation of various hydrophobic and hydrophilic solid-fluid-interaction phenomena and enables a broad range of challenging small-scale elastocapillary phenomena that were previously difficult or impractical to solve, such as the elastocapillary origami and self-assembly, dynamic contact angles of drops, capillary adhesion, as well as wetting and splashing on vibrating surfaces. 
    more » « less
  3. Colloids which adsorb to and straddle a fluid interface form monolayers that are paradigms of particle dynamics on a two dimensional fluid landscape. The dynamics is typically inertialess (Stokes flows) and dominated by interfacial tension so the interface is undeformed by the flow, and pairwise drag coefficients can be calculated. Here the hydrodynamic interaction between identical spherical colloids on a planar gas/liquid interface is calculated as a function of separation distance and immersion depth. Drag coefficients (normalized by the coefficient for an isolated particle on the surface) are computed numerically for the four canonical interactions. The first two are motions along the line of centres, either with the particles mutually approaching each other or moving in the same direction (in tandem). The second two are motions perpendicular to the line of centres, either oppositely directed (shear) or in the same direction (tandem). For mutual approach and shear, the normalized coefficients increase with a decrease in separation due to lubrication forces, and become infinite on contact when the particle is more than half immersed. However, they remain bounded at contact when the particles are less than half immersed because they do not contact underneath the liquid. For in-tandem motion, the normalized coefficients decrease with a decrease in separation; they collapse, for all immersion depths, to the dependence of the drag coefficient on separation for two particles moving in tandem in an infinite medium. The coefficients are used to compute separation against time for colloids driven together by capillary attraction. 
    more » « less
  4. Summary

    In this paper, a three‐dimensional numerical solver is developed for suspensions of rigid and soft particles and droplets in viscoelastic and elastoviscoplastic (EVP) fluids. The presented algorithm is designed to allow for the first time three‐dimensional simulations of inertial and turbulent EVP fluids with a large number particles and droplets. This is achieved by combining fast and highly scalable methods such as an FFT‐based pressure solver, with the evolution equation for non‐Newtonian (including EVP) stresses. In this flexible computational framework, the fluid can be modeled by either Oldroyd‐B, neo‐Hookean, FENE‐P, or Saramito EVP models, and the additional equations for the non‐Newtonian stresses are fully coupled with the flow. The rigid particles are discretized on a moving Lagrangian grid, whereas the flow equations are solved on a fixed Eulerian grid. The solid particles are represented by an immersed boundary method with a computationally efficient direct forcing method, allowing simulations of a large numbers of particles. The immersed boundary force is computed at the particle surface and then included in the momentum equations as a body force. The droplets and soft particles on the other hand are simulated in a fully Eulerian framework, the former with a level‐set method to capture the moving interface and the latter with an indicator function. The solver is first validated for various benchmark single‐phase and two‐phase EVP flow problems through comparison with data from the literature. Finally, we present new results on the dynamics of a buoyancy‐driven drop in an EVP fluid.

     
    more » « less
  5. The impact of a liquid drop on a solid surface involves many intertwined physical effects, and is influenced by drop velocity, surface tension, ambient pressure and liquid viscosity, among others. Experiments by Kolinski et al. ( Phys. Rev. Lett. , vol. 112, no. 13, 2014 b , p. 134501) show that the liquid–air interface begins to deviate away from the solid surface even before contact. They found that the lift-off of the interface starts at a critical time that scales with the square root of the kinematic viscosity of the liquid. To understand this, we study the approach of a liquid drop towards a solid surface in the presence of an intervening gas layer. We take a numerical approach to solve the Navier–Stokes equations for the liquid, coupled to the compressible lubrication equations for the gas, in two dimensions. With this approach, we recover the experimentally captured early time effect of liquid viscosity on the drop impact, but our results show that lift-off time and liquid kinematic viscosity have a more complex dependence than the square-root scaling relationship. We also predict the effect of interfacial tension at the liquid–gas interface on the drop impact, showing that it mediates the lift-off behaviour. 
    more » « less