skip to main content


This content will become publicly available on January 11, 2025

Title: Resilience of renewable power systems under climate risks
Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.  more » « less
Award ID(s):
2103754
NSF-PAR ID:
10487176
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature Limited 2024
Date Published:
Journal Name:
Nature Reviews Electrical Engineering
Volume:
1
Issue:
1
ISSN:
2948-1201
Page Range / eLocation ID:
53 to 66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ability to withstand and recover from disruptions is essential for seaport energy systems, and in light of the growing push for decarbonization, incorporating clean energy sources has become increasingly imperative to ensure resilience. This paper proposes a resilience enhancement planning strategy for a seaport multi‐energy system that integrates various energy modalities and sources, including heating, cooling, hydrogen, solar, and wind power. The planning strategy aims to ensure the reliable operation of the system during contingency events, such as power outages, equipment failures, or extreme weather incidents. The proposed optimization model is designed as a mixed‐integer nonlinear programming formulation, in which McCormick inequalities and other linearization techniques are utilized to tackle the model nonlinearities. The model allocates fuel cell electric trucks (FCETs), renewable energy sources, hydrogen refueling stations, and remote control switches such that the system resilience is enhanced while incorporating natural‐gas‐powered combined cooling, heating, and power system to minimize the operation and unserved demand costs. The model considers various factors such as the availability of renewable energy sources, the demand for heating, cooling, electricity, and hydrogen, the operation of remote control switches to help system reconfiguration, the travel behaviour of FCETs, and the power output of FCETs via vehicle‐to‐grid interface. The numerical results demonstrate that the proposed strategy can significantly improve the resilience of the seaport multi‐energy system and reduce the risk of service disruptions during contingency scenarios.

     
    more » « less
  2. Historically, the power system has relied on synchronous generators (SGs) to provide inertia and maintain grid stability. However, because of the increased integration of power-electronics-interfaced renewable energy sources, the grid’s stability has been challenged in the last decade due to a lack of inertia. Currently, the system predominantly uses grid-following (GFL) converters, built on the assumption that inertial sources regulate the system stability. Such an assumption does not hold for the low-inertia grids of the future. Grid-forming (GFM) converters, which mimic the traditional synchronous machinery’s functionalities, have been identified as a potential solution to support the low-inertia grids. The performance analysis of GFM converters for small-signal instability can be found in the literature, but large-signal instability is still an open research question. Moreover, various topologies and configurations of GFM converters have been proposed. Still, no comparative study combining all GFC configurations from the perspective of large-signal stability issues can be found. This paper combines and compares all the existing GFM control schemes from the perspective of large-signal stability issues to pave the way for future research and development of GFM converters for large-signal stability analysis and stabilization of the future low-inertia grids. 
    more » « less
  3. Climate change impacts the electric power system by affecting both the load and generation. It is paramount to understand this impact in the context of renewable energy as their market share has increased and will continue to grow. This study investigates the impact of climate change on the supply of renewable energy through applying novel metrics of intermittency, power production and storage required by the renewable energy plants as a function of historical climate data variability. Here we focus on and compare two disparate locations, Palma de Mallorca in the Balearic Islands and Cordova, Alaska. The main results of this analysis of wind, solar radiation and precipitation over the 1950–2020 period show that climate change impacts both the total supply available and its variability. Importantly, this impact is found to vary significantly with location. This analysis demonstrates the feasibility of a process to evaluate the local optimal mix of renewables, the changing needs for energy storage as well as the ability to evaluate the impact on grid reliability regarding both penetration of the increasing renewable resources and changes in the variability of the resource. This framework can be used to quantify the impact on both transmission grids and microgrids and can guide possible mitigation paths. 
    more » « less
  4. Abstract Aggregated community-scale data could be harnessed to provide insights into the disparate impacts of managed power outages, burst pipes, and food inaccessibility during extreme weather events. During the winter storm that brought historically low temperatures, snow, and ice to the entire state of Texas in February 2021, Texas power-generating plant operators resorted to rolling blackouts to prevent collapse of the power grid when power demand overwhelmed supply. To reveal the disparate impact of managed power outages on vulnerable subpopulations in Harris County, Texas, which encompasses the city of Houston, we collected and analyzed community-scale big data using statistical and trend classification analyses. The results highlight the spatial and temporal patterns of impacts on vulnerable subpopulations in Harris County. The findings show a significant disparity in the extent and duration of power outages experienced by low-income and minority groups, suggesting the existence of inequality in the management and implementation of the power outage. Also, the extent of burst pipes and disrupted food access, as a proxy for storm impact, were more severe for low-income and minority groups. Insights provided by the results could form a basis from which infrastructure operators might enhance social equality during managed service disruptions in such events. The results and findings demonstrate the value of community-scale big data sources for rapid impact assessment in the aftermath of extreme weather events. 
    more » « less
  5. The growing integration of distributed energy resources (DERs) in distribution grids raises various reliability issues due to DER's uncertain and complex behaviors. With large-scale DER penetration in distribution grids, traditional outage detection methods, which rely on customers report and smart meters' “last gasp” signals, will have poor performance, because renewable generators and storage and the mesh structure in urban distribution grids can continue supplying power after line outages. To address these challenges, we propose a data-driven outage monitoring approach based on the stochastic time series analysis with a theoretical guarantee. Specifically, we prove via power flow analysis that dependency of time-series voltage measurements exhibits significant statistical changes after line outages. This makes the theory on optimal change-point detection suitable to identify line outages. However, existing change point detection methods require post-outage voltage distribution, which are unknown in distribution systems. Therefore, we design a maximum likelihood estimator to directly learn distribution pa-rameters from voltage data. We prove the estimated parameters-based detection also achieves optimal performance, making it extremely useful for fast distribution grid outage identifications. Furthermore, since smart meters have been widely installed in distribution grids and advanced infrastructure (e.g., PMU) has not widely been available, our approach only requires voltage magnitude for quick outage identification. Simulation results show highly accurate outage identification in eight distribution grids with 17 configurations with and without DERs using smart meter data. 
    more » « less