skip to main content


This content will become publicly available on January 17, 2025

Title: Variational determination of the two‐electron reduced density matrix: A tutorial review
Abstract

The two‐electron reduced density matrix (2RDM) carries enough information to evaluate the electronic energy of a many‐electron system. The variational 2RDM (v2RDM) approach seeks to determine the 2RDM directly, without knowledge of the wave function, by minimizing this energy with respect to variations in the elements of the 2RDM, while also enforcing knownN‐representability conditions. In this tutorial review, we provide an overview of the theoretical underpinnings of the v2RDM approach and theN‐representability constraints that are typically applied to the 2RDM. We also discuss the semidefinite programming (SDP) techniques used in v2RDM computations and provide enough Python code to develop a working v2RDM code that interfaces to thelibSDPlibrary of SDP solvers.

This article is categorized under:

Electronic Structure Theory > Ab Initio Electronic Structure Methods

Software > Quantum Chemistry

 
more » « less
NSF-PAR ID:
10487195
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Molecular Science
Volume:
14
Issue:
1
ISSN:
1759-0876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Practitioner points

    Nitritation‐anammox treatment is an attractive method for mainstream wastewater treatment.

    Nitrate residue from anammox processes contributes to total nitrogen in the final effluent.

    Recirculation of anammox effluent to an anaerobic reactor can decrease nitrate residue.

    A recirculation ratio of 50% results in a low COD/NH4+ratio of 2 that benefits the subsequent anammox.

     
    more » « less
  2. Abstract

    Non‐native species are now common in community assemblages, but the influence of multiple introductions on ecosystem functioning remains poorly understood. In highly invaded systems, one promising approach is to use functional traits to scale measured individuals’ effects on ecosystem function up to the community level. This approach assumes that functional traits provide a common currency among species to relate individuals to ecosystem functioning.

    The goals of this study were to (i) test whether the relationship between body size and ecosystem functioning (per capita nutrient recycling) was best described by general or species‐specific scaling models; (ii) relate community structure (total biomass, average body size, non‐native dominance) to aggregated, community‐level nutrient recycling rates and ratios; and (iii) determine whether conclusions regarding the relationships between community structure and aggregate ecosystem functioning differed between species‐specific and general scaling approaches.

    By combining experimental incubations and field surveys, we compare consumer‐mediated nutrient recycling of fish communities along a non‐native dominance gradient in the Verde River watershed of central Arizona,USA. Data from ˜340 field‐sampled freshwater fish demonstrated support for general allometric relationships predicted by the metabolic theory of ecology (NH4‐N scaling coefficient = 0.72 [0.64–0.80];PO4‐P = 0.67 [0.47–0.86]). However, the best‐fit models for N and P included species‐specific random effects for both allometric slopes and intercepts.

    According to species‐specific models, stream fish communities recycled 1–12 mmolNH4‐N/hr (median = 2.8 mmol/hr) and 0.02–0.74 mmolPO4‐P/hr (median = 0.07 mmol/hr) at N:P ratios between 13.3 and 83.5 (median = 28.8). General models generated similar estimates forNH4‐N recycling but less accurate estimates forPO4‐P. Stochastic simulations that incorporated error around allometric parameter estimates led to qualitatively similar but larger differences between general and species‐specific results.

    Community structure influenced aggregate nutrient recycling, but specific conclusions depended on the scaling approach. Total biomass explained much of the among‐community variation in aggregateNH4‐N andPO4‐P for both model types, whereas non‐native dominance alone best predicted variation in aggregate N:P. Surprisingly, species‐specific and general models both reached significant yet quantitatively opposing conclusions regarding the relationship between N:P supply and non‐native dominance.

    Study results indicate that shifting fish community structure can substantially alter ecosystem functioning in this river system. However, some inferred relationships between community structure and aggregate nutrient recycling varied depending on whether general or species‐specific scaling approaches were taken. Although trait‐based approaches to link environmental change, community structure and ecosystem function hold much promise, it will be important to consider when species‐specific versus general models are necessary to scale from individuals to ecosystems.

     
    more » « less
  3. Abstract

    The persistence of populations declining from novel stressors depends, in part, on their ability to respond by trait change via evolution or plasticity. White‐nose syndrome (WNS) has caused rapid declines in several North America bat species by disrupting hibernation behaviour, leading to body fat depletion and starvation. However, some populations ofMyotis lucifugusnow persist withWNSby unknown mechanisms.

    We examined whether persistence ofM. lucifiguswithWNScould be explained by increased body fat in early winter, which would allow bats to tolerate the increased energetic costs associated withWNS. We also investigated whether bats were escaping infection or resistant to infection as an alternative mechanism explaining persistence.

    We measured body fat in early and late winter during initialWNSinvasion and 8 years later at six sites where bats are now persisting. We also measured infection prevalence and intensity in persisting populations.

    Infection prevalence was not significantly lower than observed in declining populations. However, at two sites, infection loads were lower than observed in declining populations. Body fat in early winter was significantly higher in four of the six persisting populations than duringWNSinvasion.

    Physiological models of energy use indicated that these higher fat stores could reduceWNSmortality by 58%–70%. These results suggest that differences in fat storage and infection dynamics have reduced the impacts ofWNSin many populations. Increases in body fat provide a potential mechanism for management intervention to help conserve bat populations.

     
    more » « less
  4. Abstract

    Organisms are constantly making tradeoffs. These tradeoffs may be behavioural (e.g. whether to focus on foraging or predator avoidance) or physiological (e.g. whether to allocate energy to reproduction or growth). Similarly, wildlife and fishery managers must make tradeoffs while striving for conservation or economic goals (e.g. costs vs. rewards). Stochastic dynamic programming (SDP) provides a powerful and flexible framework within which to explore these tradeoffs. A rich body of mathematical results on SDP exist but have received little attention in ecology and evolution.

    Using directed graphs – an intuitive visual model representation – we reformulated SDP models into matrix form. We synthesized relevant existing theoretical results which we then applied to two canonical SDP models in ecology and evolution. We applied these matrix methods to a simple illustrative patch choice example and an existing SDP model of parasitoid wasp behaviour.

    The proposed analytical matrix methods provide the same results as standard numerical methods as well as additional insights into the nature and quantity of other, nearly optimal, strategies, which we may also expect to observe in nature. The mathematical results highlighted in this work also explain qualitative aspects of model convergence. An added benefit of the proposed matrix notation is the resulting ease of implementation of Markov chain analysis (an exact solution for the realized states of an individual) rather than Monte Carlo simulations (the standard, approximate method). It also provides an independent validation method for other numerical methods, even in applications focused on short‐term, non‐stationary dynamics.

    These methods are useful for obtaining, interpreting, and further analysing model convergence to the optimal time‐independent (i.e. stationary) decisions predicted by an SDP model. SDP is a powerful tool both for theoretical and applied ecology, and an understanding of the mathematical structure underlying SDP models can increase our ability to apply and interpret these models.

     
    more » « less
  5. Abstract

    In multichromophore systems, characterization of electronic structure requires characterization of exciplexes, electron‐hole pairs delocalized over multiple molecules. Computing exciplex binding energy requires an accurate description of both the noncovalent interactions between the chromophores and their excited electronic states. The critical role of basis set selection for accurate description of noncovalent interactions is well known, but for some of the most accurate excited‐state methods, basis set dependence is incompletely understood. In this work, the impact of basis set size and diffuseness on CASSCF/NEVPT2 binding energies is determined for three systems in their lowest singlet excited states: the benzene excimer, thecis‐butadiene‐benzene exciplex, and the benzene‐naphthalene exciplex. We demonstrate that excellent CBS binding energies may be obtained using the moderately‐sized jun‐cc‐pV(D + d)Z and jun‐cc‐pV(T + d)Z basis sets and a simpleN−3model. Repeating this procedure with theN = 3, 4basis sets from the most diffuse basis set family applied to each system yields a binding energy of 56.6 ± 1.2 kJ/mol for the benzene excimer and binding energies of 11.1 ± 0.5 kJ/mol and 19.2 ± 1.7 kJ/mol for thecis‐butadiene‐benzene exciplex and the benzene‐naphthalene exciplex, respectively.

     
    more » « less