skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moving a missing hand: children born with below elbow deficiency can enact hand grasp patterns with their residual muscles
Abstract Children with a unilateral congenital below elbow deficiency (UCBED) have one typical upper limb and one that lacks a hand, ending below the elbow at the proximal/mid forearm. UCBED is an isolated condition, and affected children otherwise develop normal sensorimotor control. Unlike adults with upper limb absence, the majority of whom have an acquired loss, children with UCBED never developed a hand, so their residual muscles have never actuated an intact limb. Their ability to purposefully modulate affected muscle activity is often assumed to be limited, and this assumption has influenced prosthetic design and prescription practices for this population as many modern devices derive control signals from affected muscle activity. To better understand the motor capabilities of the affected muscles, we used ultrasound imaging to study 6 children with UCBED. We examined the extent to which subjects activate their affected muscles when performing mirrored movements with their typical and missing hands. We demonstrate that all subjects could intentionally and consistently enact at least five distinct muscle patterns when attempting different missing hand movements (e.g., power grasp) and found similar performance across affected and typically developed limbs. These results suggest that although participants had never actuated the missing hand they could distinctively and consistently activate the residual muscle patterns associated with actions on the unaffected side. These findings indicate that motor control still develops in the absence of the normal effector, and can serve as a guide for developing prostheses that leverage the full extent of these children’s motor control capabilities.  more » « less
Award ID(s):
2133879
PAR ID:
10487258
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of NeuroEngineering and Rehabilitation
Volume:
21
Issue:
1
ISSN:
1743-0003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Children with Unilateral Congenital Below-Elbow Deficiencies (born without a hand, UCBED) have a high rate of prosthetic abandonment, pointing to unresolved challenges that may be distinct from those faced by adults with limb loss. There is limited knowledge of the motor control these children have over their affected muscles, a highly relevant question for effective dextrous prosthetic control. Our research aims to measure the extent of volitional muscle activation that exists in the residuum when children attempt moving their missing hand, with the goal of creating highly functional pediatric-specific prosthetic devices. In this work, we recruited 28 pediatric UCBED patients across four Shriners Hospital locations. We measured muscle activity using ultrasound imaging and surface electromyography while children attempted 10 missing-hand movements, then used machine learning to analyze the patterns of the affected and unaffected sides. Our algorithms predicted hand movements from residual muscle activity at over 80% accuracy in most cases, and well above chance in all participants. This indicates inherent muscular control which may be leveraged to develop more functional prosthetic devices tailored towards pediatric UCBED patients. 
    more » « less
  2. Abstract Children born with congenital upper limb absence exhibit consistent and distinguishable levels of biological control over their affected muscles, assessed through surface electromyography (sEMG). This represents a significant advancement in determining how these children might utilize sEMG-controlled dexterous prostheses. Despite this potential, the efficacy of employing conventional sEMG classification techniques for children born with upper limb absence is uncertain, as these techniques have been optimized for adults with acquired amputations. Tuning sEMG classification algorithms for this population is crucial for facilitating the successful translation of dexterous prostheses. To support this effort, we collected sEMG data from a cohort of N = 9 children with unilateral congenital below-elbow deficiency as they attempted 11 hand movements, including rest. Five classification algorithms were used to decode motor intent, tuned with features from the time, frequency, and time–frequency domains. We derived the congenital feature set (CFS) from the participant-specific tuned feature sets, which exhibited generalizability across our cohort. The CFS offline classification accuracy across participants was 73.8% ± 13.8% for the 11 hand movements and increased to 96.5% ± 6.6% when focusing on a reduced set of five movements. These results highlight the potential efficacy of individuals born with upper limb absence to control dexterous prostheses through sEMG interfaces. 
    more » « less
  3. Abstract In recent years, commercially available dexterous upper limb prostheses for children have begun to emerge. These devices derive control signals from surface electromyography (measure of affected muscle electrical activity, sEMG) to drive a variety of grasping motions. However, the ability for children with congenital upper limb deficiency to actuate their affected muscles to achieve naturalistic prosthetic control is not well understood, as compared to adults or children with acquired hand loss. To address this gap, we collected sEMG data from 9 congenital one-handed participants ages 8–20 years as they envisioned and attempted to perform 10 different movements with their missing hands. Seven sEMG electrodes were adhered circumferentially around the participant’s affected and unaffected limbs and participants mirrored the attempted missing hand motions with their intact side. To analyze the collected sEMG data, we used time and frequency domain analyses. We found that for the majority of participants, attempted hand movements produced detectable and consistent muscle activity, and the capacity to achieve this was not dissimilar across the affected and unaffected sides. These data suggest that children with congenital hand absence retain a degree of control over their affected muscles, which has important implications for translating and refining advanced prosthetic control technologies for children. 
    more » « less
  4. Training for children who are prescribed myoelectric upper limb prostheses presents unique challenges in maintaining attention, motivation, and ultimately providing an enjoyable experience that is effective in developing the core motor skills required for device operation. From a clinical perspective, patient engagement is critical for maximizing functional outcomes, and from a research perspective, it can be vital to ensuring the quality of collected data. Therefore, our goal was to develop a training and research platform designed to both collect high-quality data from actively engaged participants and to provide them with a fun and engaging way to practice actuating the muscles relevant to myoelectric prosthetic control. “Ice is Nice” is a side scrolling video game that prompts children to perform a variety of movements with their missing hand, and the game is controlled using real-time measurement of their muscular activity. Our system is agnostic to muscle measurement systems, capable of using electromyography, force myography, and ultrasound-based control, among many others. As the game is played, data is logged to capture metrics relevant to game proficiency, human motor learning, and machine learning performance. Therefore, we suggest “Ice is Nice” provides a research and training platform with significant potential to support numerous follow-on studies conducted with children and adults. These studies aim to develop robust prosthetic control strategies, understand the effects of motor learning on prosthetic operation, and examine the functional capabilities of individuals operating upper limb prostheses. 
    more » « less
  5. Abstract Objective. Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activity of residual muscle is similar to that of intact muscle. This study sought to understand potential changes to motor unit (MU) properties after limb amputation. Approach. Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intact tibialis anterior (TA) and gastrocnemius (GA) muscles were recorded while subjects traced profiles targeting up to 20 and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of motor unit (MU) spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman’s size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles. Main results. The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates. Significance. We showed peripheral neuromuscular damage also leads to spinal-level functional reorganization. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses. 
    more » « less