skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modified motor unit properties in residual muscle following transtibial amputation
Abstract Objective. Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activity of residual muscle is similar to that of intact muscle. This study sought to understand potential changes to motor unit (MU) properties after limb amputation. Approach. Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intact tibialis anterior (TA) and gastrocnemius (GA) muscles were recorded while subjects traced profiles targeting up to 20 and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of motor unit (MU) spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman’s size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles. Main results. The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates. Significance. We showed peripheral neuromuscular damage also leads to spinal-level functional reorganization. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses.  more » « less
Award ID(s):
1954587
PAR ID:
10484281
Author(s) / Creator(s):
; ; ; ; ;  
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Neural Engineering
ISSN:
1741-2560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As research is progressing towards EMG control of lower limb prostheses, it is vital to understand the neurophysiology of the residual muscles in the amputated limb, which has been largely ignored. Therefore, the goal of this study was to characterize the activation patterns (muscle recruitment and motor unit discharge patterns) of the residual muscles of lower limb amputees. One transtibial amputee subject was recruited for this pilot study. The participant wore three high-density EMG electrode pads (8x8 grid with 64 channels) on each limb (a total of six pads) – one on the tibialis anterior (TA), medial gastrocnemius (MG), and lateral gastrocnemius (LG), respectively. The participant was asked to follow a ramping procedure plateauing at 50% of maximum voluntary contraction (MVC) for both the TA and Gastrocnemius muscles. The EMG signals were then decomposed offline; the firing rate and spatial activation patterns of the muscle were analyzed. Results showed slower and more variable firing rate in motor units of residual muscles than those of intact side. In addition, the spatial pattern of muscle activation differed between residual and intact muscles. These results indicate that surface EMG signals recorded from residual muscles present modified signal features from intact shank muscles, which should be considered when implementing myoelectric control schemes. 
    more » « less
  2. Abstract Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations. Approach. We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinical practice perspectives. Significance. This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function. 
    more » « less
  3. Current lower-limb prostheses do not provide active assistance in postural control tasks to maintain the user’s balance, particularly in situations of perturbation. In this study, we aimed to address this missing function by enabling neural control of robotic lower-limb prostheses. Specifically, electromyographic (EMG) signals (amplified neural control signals) recorded from antagonistic residual ankle muscles were used to drive a robotic prosthetic ankle directly and continuously. Participants with transtibial amputation were recruited and trained in using the EMG-driven robotic ankle. We studied how using the EMG-controlled ankle affected the participants’ anticipatory and compensatory postural control strategies and stability under expected perturbations compared with using their daily passive devices. We investigated the similarity of neuromuscular coordination (by analyzing motor modules) of the participants, using either device in a postural sway task, to that of able-bodied controls. Results showed that, compared with their passive prosthesis, the EMG-controlled prosthesis enabled participants to use near-normative postural control strategies, as evidenced by improved between-limb symmetry in intact-prosthetic center-of-pressure and joint angle excursions. Participants substantially improved postural stability, as evidenced by a reduction in steps or falls using the EMG-controlled prosthetic ankle. Furthermore, after relearning to use residual ankle muscles to drive the robotic ankle in postural control, nearly all participants’ motor module structure shifted toward that observed in individuals without limb amputations. Here, we have demonstrated the potential benefit of direct EMG control of robotic lower limb prostheses to restore normative postural control strategies (both neural and biomechanical) toward enhancing standing postural stability in amputee users. 
    more » « less
  4. Abstract Objective. Accurate prediction of motor unit (MU) discharge activity from surface electromyogram (sEMG) signals is critical for understanding neuromuscular control and for enabling practical neural interface applications. However, current MU decomposition approaches rely on person-specific data, limiting their generalizability. Approach. We developed a cross-person decomposition framework and validated the algorithm using synthesized high-density sEMG data by convoluting simulated MU firing spike trains with action potential templates derived from human experimental data. We first obtained separation matrix from multiple training subjects and applied them to decompose sEMG signals from unseen test subjects. This allowed us to obtain MU spike trains. The predicted outcomes were then compared with the ground truth across multiple metrics, including spike detection accuracy, MU firing rate (FR), waveform similarity of motor unit action potentials (MUAP), and MU recruitment thresholds. Main results. Our results demonstrated strong agreement between predicted and true MU activity. Specifically, we found high R² values (≥0.95) for the populational FR, and the coefficient of variation of FR remained stable across different MU retention thresholds. The MU similarity analyses revealed that the predicted MUAPs closely matched ground truth counterparts both in waveform shape and spatial distribution. Furthermore, recruitment thresholds exhibited strong linear relation (R² = 0.98 ± 0.006) with minimal error. Significance. These findings demonstrate the feasibility of efficient cross-person MU decomposition with minimal accuracy loss, laying the groundwork for generalized, plug-and-play myoelectric systems in neurophysiology, neuroprosthetic, and rehabilitation applications. 
    more » « less
  5. Abstract Children with a unilateral congenital below elbow deficiency (UCBED) have one typical upper limb and one that lacks a hand, ending below the elbow at the proximal/mid forearm. UCBED is an isolated condition, and affected children otherwise develop normal sensorimotor control. Unlike adults with upper limb absence, the majority of whom have an acquired loss, children with UCBED never developed a hand, so their residual muscles have never actuated an intact limb. Their ability to purposefully modulate affected muscle activity is often assumed to be limited, and this assumption has influenced prosthetic design and prescription practices for this population as many modern devices derive control signals from affected muscle activity. To better understand the motor capabilities of the affected muscles, we used ultrasound imaging to study 6 children with UCBED. We examined the extent to which subjects activate their affected muscles when performing mirrored movements with their typical and missing hands. We demonstrate that all subjects could intentionally and consistently enact at least five distinct muscle patterns when attempting different missing hand movements (e.g., power grasp) and found similar performance across affected and typically developed limbs. These results suggest that although participants had never actuated the missing hand they could distinctively and consistently activate the residual muscle patterns associated with actions on the unaffected side. These findings indicate that motor control still develops in the absence of the normal effector, and can serve as a guide for developing prostheses that leverage the full extent of these children’s motor control capabilities. 
    more » « less