Abstract The spectacular outbursts of energy associated with supernovae (SNe) have long motivated research into their potentially hazardous effects on Earth and analogous environments. Much of this research has focused primarily on the atmospheric damage associated with the prompt arrival of ionizing photons within days or months of the initial outburst, and the high-energy cosmic rays that arrive thousands of years after the explosion. In this study, we turn the focus to persistent X-ray emission, arising in certain SNe that have interactions with a dense circumstellar medium and observed months and/or years after the initial outburst. The sustained high X-ray luminosity leads to large doses of ionizing radiation out to formidable distances. We assess the threat posed by these X-ray-luminous SNe for Earth-like planetary atmospheres; our results are rooted in the X-ray SN observations from Chandra, Swift-XRT, XMM-Newton, NuSTAR, and others. We find that this threat is particularly acute for SNe showing evidence of strong circumstellar interaction, such as Type IIn explosions, which have significantly larger ranges of influence than previously expected and lethal consequences up to ∼50 pc away. Furthermore, X-ray-bright SNe could pose a substantial and distinct threat to terrestrial biospheres and tighten the Galactic habitable zone. We urge follow-up X-ray observations of interacting SNe for months and years after the explosion to shed light on the physical nature and full-time evolution of the emission and to clarify the danger that these events pose for life in our galaxy and other star-forming regions.
more »
« less
Could a Kilonova Kill: A Threat Assessment
Abstract Binary neutron star mergers produce high-energy emissions from several physically different sources, including a gamma-ray burst (GRB) and its afterglow, a kilonova (KN), and, at late times, a remnant many parsecs in size. Ionizing radiation from these sources can be dangerous for life on Earth-like planets when located too close. Work to date has explored the substantial danger posed by the GRB to on-axis observers; here we focus instead on the potential threats posed to nearby off-axis observers. Our analysis is based largely on observations of the GW170817/GRB 170817A multi-messenger event, as well as theoretical predictions. For baseline KN parameters, we find that the X-ray emission from the afterglow may be lethal out to ∼1 pc and the off-axis gamma-ray emission may threaten a range out to ∼4 pc, whereas the greatest threat comes years after the explosion, from the cosmic rays accelerated by the KN blast, which can be lethal out to distances up to ∼11 pc. The distances quoted here are typical, but the values have significant uncertainties and depend on the viewing angle, ejected mass, and explosion energy in ways we quantify. Assessing the overall threat to Earth-like planets, KNe have a similar kill distance to supernovae, but are far less common. However, our results rely on the scant available KN data, and multi-messenger observations will clarify the danger posed by such events.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10487421
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 961
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 170
- Size(s):
- Article No. 170
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT Recently, ground-based Imaging Atmospheric Cherenkov Telescopes have reported the detection of very-high-energy (VHE) gamma-rays from some gamma-ray bursts (GRBs). One of them, GRB 190829A, was triggered by the Swift satellite, and about 2 × 104 s after the burst onset the VHE gamma-ray emission was detected by H.E.S.S. with ∼5σ significance. This event had unusual features of having much smaller isotropic equivalent gamma-ray energy than typical long GRBs and achromatic peaks in X-ray and optical afterglow at about 1.4 × 103 s. Here, we propose an off-axis jet scenario that explains these observational results. In this model, the relativistic beaming effect is responsible for the apparently small isotropic gamma-ray energy and spectral peak energy. Using a jetted afterglow model, we find that the narrow jet, which has the initial Lorentz factor of 350 and the initial jet opening half-angle of 0.015 rad, viewed off-axis can describe the observed achromatic behaviour in the X-ray and optical afterglow. Another wide, baryon-loaded jet is necessary for the later-epoch X-ray and radio emissions. According to our model, the VHE gamma rays observed by H.E.S.S. at 2 × 104 s may come from the narrow jet through the synchrotron self-Compton process.more » « less
-
Abstract Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor Γ init below the Γ init ∼ 100 required to produce a long-duration gamma-ray burst (LGRB), but which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Facility (ZTF). Our search yielded seven optical transients that resemble on-axis LGRB afterglows in terms of their red colors ( g − r > 0 mag), faint host galaxies ( r > 23 mag), rapid fading ( dr / dt > 1 mag day −1 ), and in some cases X-ray and radio emission. Spectroscopy of the transient emission within a few days of discovery established cosmological distances (redshift z = 0.876 to 2.9) for six of the seven events, tripling the number of afterglows with redshift measurements discovered by optical surveys without a γ -ray trigger. A likely associated LGRB (GRB 200524A, GRB 210204A, GRB 210212B, and GRB 210610B) was identified for four events (ZTF 20abbiixp/AT 2020kym, ZTF 21aagwbjr/AT 2021buv, ZTF 21aakruew/AT 2021cwd, and ZTF 21abfmpwn/AT 2021qbd) post facto, while three (ZTF 20aajnksq/AT 2020blt, ZTF 21aaeyldq/AT 2021any, and ZTF 21aayokph/AT 2021lfa) had no detected LGRB counterpart. The simplest explanation for the three “orphan” events is that they were regular LGRBs missed by high-energy satellites owing to detector sensitivity and duty cycle, although it is possible that they were intrinsically subluminous in γ -rays or viewed slightly off-axis. We rule out a scenario in which dirty fireballs have a similar energy per solid angle to LGRBs and are an order of magnitude more common. In addition, we set the first direct constraint on the ratio of the opening angles of the material producing γ -rays and the material producing early optical afterglow emission, finding that they must be comparable.more » « less
-
Abstract We present the IXPE observation of GRB 221009A, which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after traveling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2–8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons that are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption, and it ranges between ∼55% and ∼82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases.more » « less
-
null (Ed.)ABSTRACT The discovery of GRB 170817A, the first unambiguous off-axis short gamma-ray burst (sGRB) arising from a neutron star merger, has challenged our understanding of the angular structure of relativistic jets. Studies of the jet propagation usually assume that the jet is ejected from the central engine with a top-hat structure and its final structure, which determines the observed light curve and spectra, is primarily regulated by the interaction with the nearby environment. However, jets are expected to be produced with a structure that is more complex than a simple top-hat, as shown by global accretion simulations. We present numerical simulations of sGRBs launched with a wide range of initial structures, durations, and luminosities. We follow the jet interaction with the merger remnant wind and compute its final structure at distances ≳1011 cm from the central engine. We show that the final jet structure, as well as the resulting afterglow emission, depends strongly on the initial structure of the jet, its luminosity, and duration. While the initial structure of the jet is preserved for long-lasting sGRBs, it is strongly modified for jets barely making their way through the wind. This illustrates the importance of combining the results of global simulations with propagation studies in order to better predict the expected afterglow signatures from neutron star mergers. Structured jets provide a reasonable description of the GRB 170817A afterglow emission with an off-axis angle θobs ≈ 22.5°.more » « less