skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle
Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chimpanzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also compared to the human-African ape differential. Humans are distinct from African apes and among a small group of terrestrial mammals whose pelvis and lower limb muscle is slow fiber dominant, on average. Behavioral interventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and increases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of selection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin skeletal muscle evolution.  more » « less
Award ID(s):
1945809 2018436
PAR ID:
10487439
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Volume:
281
Issue:
C
ISSN:
1095-6433
Page Range / eLocation ID:
111415
Subject(s) / Keyword(s):
gorilla chimpanzee myosin heavy chain I fiber type lower limb hind limb enhancers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Skeletal muscle slow fiber (MyHC-I) content varies across muscles and taxa and is one of the traits that distinguishes humans from other apes, yet no study to date has compiled this interspecific data into a single, usable format. Thus, the goal of this study was to collate mammalian skeletal muscle slow fiber composition data from published, peer-reviewed articles into a single, open-access Excel sheet for interspecific comparison and analysis (as in Queeno et al., 2023). A systematic literature search and review was conducted between June 1 2021 and November 30 2022 following a structure similar to PRISMA. Terms relating to mammalian skeletal muscle fiber composition were queried using academic search systems (e.g. Google Scholar) and library databases for relevant primary articles. Reference lists in relevant articles were thoroughly investigated for eligible studies. In total, 269 primary articles were deemed eligible for inclusion in the meta-analysis (i.e. these studies provided skeletal muscle fiber composition data from mammalian species that were not subjected to experimental manipulations). Relevant metadata (e.g. taxonomic information, sex, age, fiber-typing methodology, average body mass, and average percent slow fiber content) was then extracted from the text, figures, tables, and supplementary materials of eligible studies when available. Muscle fiber composition data was collected from more than 200 skeletal muscles across 174 mammalian species, which will be of immense value to those interested in muscle physiology, interspecific muscle comparisons, and connections between muscle physiology, taxonomy, body mass, ecomorphology and locomotor strategy (among others). These data highlight certain species, taxonomic orders, and muscles for which fiber composition data is lacking and needs investigation. Hopefully, these data will spark interest in gathering muscle fiber composition data from underrepresented species and muscles, and generate interest in pursuing questions relating to muscle physiology and evolution, as well as analyses based on interspecific datasets. 
    more » « less
  2. Holowka, Nicholas (Ed.)
    Investigations into the role of selection in the origin of human bipedalism using ape models have relied heavily on behavioral frequency data. However, analysis of video of wild apes has the advantage of capturing the details of the entirety of each rare, brief bipedal bout witnessed, not just the moment detected in observational studies. We used video to explore the behavioral context and effects of several variables on bipedalism across all ages in wild forest-dwelling chimpanzees from Ngogo, Uganda. We found, as in earlier studies, that adult chimpanzees used bipedalism in the context of foraging; however, unlike earlier studies, we found that while foraging was the predominant behavioral context during arboreal bipedalism, terrestrial bipedalism was more varied in contextual composition. We also found that these different behavioral contexts of bipedalism were associated with different variables. Specifically, foraging was associated with arboreality, hand assistance, and adulthood; antagonism was associated with adulthood, locomotion, and males; play was associated with terrestriality and subadulthood; and travel was associated with locomotion and females. Given that several variables influence bipedalism across multiple behavioral contexts in chimpanzees, it is likely that the early evolution of human bipedalism occurred under the influence of numerous factors. This exploratory study thus suggests that more comprehensive models should be used when reconstructing the transition to bipedalism from the Last Common Ancestor of humans and chimpanzees. 
    more » « less
  3. Abstract Understanding the functional significance of morphological variation is crucial for investigating locomotor adaptations in fossil primates and early hominins. However, the nuanced form–function relationship in the upper limbs of extant apes is difficult to discern due to their varied locomotor behaviors, complicating the interpretation of similar features in fossil hominins. Trabecular bone, which responds to mechanical strain, reflects the intensity and direction of forces during movement, making it valuable for identifying locomotor adaptations in hominoids. This study examines trabecular bone in the clavicle—a crucial component of shoulder biomechanics—to explore its relationship to mechanical loading patterns and bone functional adaptations in primate locomotion. Using a whole‐bone approach, we analyzed trabecular structure in the clavicle of apes:Gorillaspp. (G. beringei:N = 28;G. gorilla:N = 29),Homo sapiens(N = 19),Hylobatesspp. (H. lar:N = 28;H. concolor:N = 3),Pongospp. (P. abelii:N = 13;P. pygmaeus:N = 24), andPan troglodytes(N = 35), quantifying relative bone volume fraction (rBV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) from high‐resolution micro‐CT scans. Aspects of the clavicular trabecular architecture among ape taxa appear to correspond to differences in locomotor behavior. In most taxa, rBV/TV is highest in regions underlying muscle attachment sites frequently used during upper limb activities, with differences among taxa predominantly reflecting variations in upper limb use and muscle attachment sites. Regions of high rBV/TV beneath entheses and articular surfaces result from different trabecular parameters—higher rBV/TV is achieved primarily via greater Tb.Th under entheses, while in subarticular regions, it is driven by higher Tb.N. However, no consistent differences in sternoclavicular subarticular trabecular bone emerge betweenHomoand the other apes, despite differences in shoulder positioning on the torso. Muscle activity appears to significantly influence trabecular bone structure in the clavicle of living apes, with implications for reconstructing early hominin locomotor behaviors and upper limb use. 
    more » « less
  4. Apes possess two sex chromosomes—the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements—owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species. 
    more » « less
  5. Abstract ObjectivesGorillas, along with chimpanzees and bonobos, are ubiquitously described as ‘knuckle‐walkers.’ Consequently, knuckle‐walking (KW) has been featured pre‐eminently in hypotheses of the pre‐bipedal locomotor behavior of hominins and in the evolution of locomotor behavior in apes. However, anecdotal and behavioral accounts suggest that mountain gorillas may utilize a more complex repertoire of hand postures, which could alter current interpretations of African ape locomotion and its role in the emergence of human bipedalism. Here we documented hand postures during terrestrial locomotion in wild mountain gorillas to investigate the frequency with which KW and other hand postures are utilized in the wild. Materials and methodsMultiple high‐speed cameras were used to record bouts of terrestrial locomotion of 77 habituated mountain gorillas at Bwindi Impenetrable National Park (Uganda) and Volcanoes National Park (Rwanda). ResultsWe captured high‐speed video of hand contacts in 8% of the world's population of mountain gorillas. Our results reveal that nearly 40% of these gorillas used “non‐KW” hand postures, and these hand postures constituted 15% of all hand contacts. Some of these “non‐KW” hand postures have never been documented in gorillas, yet match hand postures previously identified in orangutans. DiscussionThese results highlight a previously unrecognized level of hand postural diversity in gorillas, and perhaps great apes generally. Although present at lower frequencies than KW, we suggest that the possession of multiple, versatile hand postures present in wild mountain gorillas may represent a shared feature of the African ape and human clade (or even great ape clade) rather than KWper se. 
    more » « less