skip to main content


This content will become publicly available on September 1, 2024

Title: Physical model comparison of gray and green mitigation alternatives for flooding and wave force reduction in an idealized urban coastal environment
A 1:16 scaled physical model was constructed to investigate the effectiveness of a seawall, a submerged breakwater, and mangrove forests to mitigate overland flooding and forces on structures in an idealized urban coastal environment. The experiment was performed using tsunami-like waves at different water levels, wave amplitudes, and time scales to simulate long-wave dynamics. The baseline condition (no mitigation), seawall, submerged breakwater, and mangrove forest were tested individually, and the seawall and submerged breakwater were also tested in combination. Wave gauges, acoustic Doppler velocimeters, loadcells, and pressure gauges were used to measure wave elevations, velocities, forces, and pressures on coastal structures, respectively. The performance of these hard structures and mangroves was compared through their effects on wave elevation, particle velocity, and force reduction. Experimental results showed that each protecting structure reduced the horizontal wave forces and inland flow hydrodynamics in the low-water-level case, with a similar performance by the individual seawall, submerged breakwater, and four rows of mangroves. The combined configuration, when the seawall and submerged breakwater were installed simultaneously, caused the most significant maximum force percent reduction by approximately 50%, while mangrove forests arranged in eight rows resulted in a force reduction of 46% in the first building array. However, in the high-water-level cases, the impulsive force measured with the presence of the submerged breakwater was larger than in the baseline case; thus, the submerged breakwater may amplify the impulsive force on the vertical building rows for certain incident wave conditions. Generally, the combined hard structures induced the lowest force reduction factor measured in almost every building row compared to the seawall, submerged breakwater, and mangroves considered separately for all wave conditions and water levels. That means this multi-tiered configuration showed better performance than individual alternatives in reducing horizontal forces inland than the individual alternatives considered separately.  more » « less
Award ID(s):
2110262
NSF-PAR ID:
10487520
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Coastal Engineering
Date Published:
Journal Name:
Coastal Engineering
Volume:
184
Issue:
C
ISSN:
0378-3839
Page Range / eLocation ID:
104339
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones.

     
    more » « less
  2. Coastal and nearshore communities face increasing coastal flood hazards associated with climate change, leading to overland flow and inundation processes in the natural and built environments. As communities seek to build resilience to address these hazards, natural infrastructure (e.g., emergent vegetation) and hybrid designs have been identified for their potential to attenuate storm-driven waves and associated effects in developed nearshore regions. However, challenges remain in robustly characterizing the performance of natural systems under a range of incident hydrodynamic conditions and in bridging interdisciplinary knowledge gaps needed for successful implementation. This paper synthesizes field and laboratory results investigating the capacity of Rhizophora mangle (red mangrove) systems to mitigate wave effects. Results indicate that R. mangle forests of moderate cross-shore width have significant effects on wave transformation and load reduction in sheltered inland areas. Opportunities for future interdisciplinary collaborations are also identified. 
    more » « less
  3. Camp, Emma F. (Ed.)
    Marine ecosystems are structured by coexisting species occurring in adjacent or nested assemblages. Mangroves and corals are typically observed in adjacent assemblages (i.e., mangrove forests and coral reefs) but are increasingly reported in nested mangrove-coral assemblages with corals living within mangrove habitats. Here we define these nested assemblages as “coexisting mangrove-coral” (CMC) habitats and review the scientific literature to date to formalize a baseline understanding of these ecosystems and create a foundation for future studies. We identify 130 species of corals living within mangrove habitats across 12 locations spanning the Caribbean Sea, Red Sea, Indian Ocean, and South Pacific. We then provide the first description, to our knowledge, of a canopy CMC habitat type located in Bocas del Toro, Panama. This canopy CMC habitat is one of the most coral rich CMC habitats reported in the world, with 34 species of corals growing on and/or among submerged red mangrove aerial roots. Based on our literature review and field data, we identify biotic and abiotic characteristics common to CMC systems to create a classification framework of CMC habitat categories: (1) Lagoon, (2) Inlet, (3) Edge, and (4) Canopy. We then use the compiled data to create a GIS model to suggest where additional CMC habitats may occur globally. In a time where many ecosystems are at risk of disappearing, discovery and description of alternative habitats for species of critical concern are of utmost importance for their conservation and management. 
    more » « less
  4. Tropical environments with unique abiotic and biotic factors—such as salt ponds, mangroves, and coral reefs—are often in close proximity. The heterogeneity of these environments is reflected in community shifts over short distances, resulting in high biodiversity. While phytoplankton assemblages physically associated with corals, particularly their symbionts, are well studied, less is known about phytoplankton diversity across tropical aquatic environments. We assess shifts in phytoplankton community composition along inshore to offshore gradients by sequencing and analyzing 16S rRNA gene amplicons using primers targeting the V1-V2 region that capture plastids from eukaryotic phytoplankton and cyanobacteria, as well as heterotrophic bacteria. Microbial alpha diversity computed from 16S V1-V2 amplicon sequence variant (ASV) data from 282 samples collected in and around Curaçao, in the Southern Caribbean Sea, varied more within the dynamic salt ponds, salterns, and mangroves, compared to the seemingly stable above-reef, off-reef, and open sea environments. Among eukaryotic phytoplankton, stramenopiles often exhibited the highest relative abundances in mangrove, above-reef, off-reef, and open sea environments, where cyanobacteria also showed high relative abundances. Within stramenopiles, diatom amplicons dominated in salt ponds and mangroves, while dictyochophytes and pelagophytes prevailed above reefs and offshore. Green algae and cryptophytes were also present, and the former exhibited transitions following the gradient from inland to offshore. Chlorophytes and prasinophyte Class IV dominated in salt ponds, while prasinophyte Class II, including Micromonas commoda and Ostreococcus Clade OII, had the highest relative abundances of green algae in mangroves, above-reef, off-reef, and the open sea. To improve Class II prasinophyte classification, we sequenced 18S rRNA gene amplicons from the V4 region in 41 samples which were used to interrelate plastid-based results with information on uncultured prasinophyte species from prior 18S rRNA gene-based studies. This highlighted the presence of newly described Ostreococcus bengalensis and two Micromonas candidate species. Network analyses identified co-occurrence patterns between individual phytoplankton groups, including cyanobacteria, and heterotrophic bacteria. Our study reveals multiple uncultured and novel lineages within green algae and dictyochophytes in tropical marine habitats. Collectively, the algal diversity patterns and potential co-occurrence relationships observed in connection to physicochemical and spatial influences help provide a baseline against which future change can be assessed. 
    more » « less
  5. Abstract

    Mangroves cover less than 0.1% of Earth’s surface, store large amounts of carbon per unit area, but are threatened by global environmental change. The capacity of mangroves productivity could be characterized by their canopy greenness, but this property has not been systematically tested across gradients of mangrove forests and national scales. Here, we analyzed time series of Normalized Difference Vegetation Index (NDVI), mean air temperature and total precipitation between 2001 and 2015 (14 years) to quantify greenness and climate variability trends for mangroves not directly influenced by land use/land cover change across Mexico. Between 2001 and 2015 persistent mangrove forests covered 432 800 ha, representing 57% of the total current mangrove area for Mexico. We found a temporal greenness increase between 0.003[0.001–0.004]and 0.004[0.002–0.005]yr−1(NDVI values ± 95%CI) for mangroves located over the Gulf of California and the Pacific Coast, with many mangrove areas dominated byAvicennia germinans.Mangroves developed along the Gulf of Mexico and Caribbean Sea did not show significant greenness trends, but site-specific areas showed significant negative greenness trends. Mangroves with surface water input have above ground carbon stocks (AGC) between 37.7 and 221.9 Mg C ha−1and soil organic carbon density at 30 cm depth (SOCD) between 92.4 and 127.3 Mg C ha−1. Mangroves with groundwater water input have AGC of 12.7 Mg C ha−1and SOCD of 219 Mg C ha−1. Greenness and climate variability trends could not explain the spatial variability in carbon stocks for most mangrove forests across Mexico. Site-specific characteristics, including mangrove species dominance could have a major influence on greenness trends. Our findings provide a baseline for national-level monitoring programs, carbon accounting models, and insights for greenness trends that could be tested around the world.

     
    more » « less