skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overestimation of Mangroves Deterioration From Sea Level Rise in Tropical Deltas
Abstract Mangrove forests are critical coastal ecosystems that provide great socio‐ecological services, which are also highly vulnerable to climate change, particularly to sea level rise (SLR). Here we assess changes in mangrove forests in four distinct river/tide/wave‐dominant large deltas along the Indo‐Pacific coast based on 1,336 remote sensing images by machine learning techniques. We find that mangroves are migrating seaward at a rate of 18% ± 12% m/yr, which can offset landward mangroves loss, 67% of which caused by land use conversion. The fact that mangroves are expanding seaward with accretion rates exceeding SLR suggests that climate change has not yet triggered substantial loss in deltaic mangrove forests. Assuming that present environmental conditions do not change and that sediment and organic deposition in the deltaic topsets match SLR rates, we project that 90% of deltaic mangrove forests may start to retreat after 132–194 years. Early inundation of mangroves will occur in wave‐dominated delta.  more » « less
Award ID(s):
2224608
PAR ID:
10596778
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
GRL
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
19
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mangroves cover less than 0.1% of Earth’s surface, store large amounts of carbon per unit area, but are threatened by global environmental change. The capacity of mangroves productivity could be characterized by their canopy greenness, but this property has not been systematically tested across gradients of mangrove forests and national scales. Here, we analyzed time series of Normalized Difference Vegetation Index (NDVI), mean air temperature and total precipitation between 2001 and 2015 (14 years) to quantify greenness and climate variability trends for mangroves not directly influenced by land use/land cover change across Mexico. Between 2001 and 2015 persistent mangrove forests covered 432 800 ha, representing 57% of the total current mangrove area for Mexico. We found a temporal greenness increase between 0.003[0.001–0.004]and 0.004[0.002–0.005]yr−1(NDVI values ± 95%CI) for mangroves located over the Gulf of California and the Pacific Coast, with many mangrove areas dominated byAvicennia germinans.Mangroves developed along the Gulf of Mexico and Caribbean Sea did not show significant greenness trends, but site-specific areas showed significant negative greenness trends. Mangroves with surface water input have above ground carbon stocks (AGC) between 37.7 and 221.9 Mg C ha−1and soil organic carbon density at 30 cm depth (SOCD) between 92.4 and 127.3 Mg C ha−1. Mangroves with groundwater water input have AGC of 12.7 Mg C ha−1and SOCD of 219 Mg C ha−1. Greenness and climate variability trends could not explain the spatial variability in carbon stocks for most mangrove forests across Mexico. Site-specific characteristics, including mangrove species dominance could have a major influence on greenness trends. Our findings provide a baseline for national-level monitoring programs, carbon accounting models, and insights for greenness trends that could be tested around the world. 
    more » « less
  2. Abstract Climate change is raising sea levels across the globe. On river deltas, sea‐level rise (SLR) may result in land loss, saline intrusion into groundwater aquifers, and other problems that adversely impact coastal communities. There is significant uncertainty surrounding future SLR trajectories and magnitudes, even over decadal timescales. Given this uncertainty, numerical modeling is needed to explore how different SLR projections may impact river delta evolution. In this work, we apply the pyDeltaRCM numerical model to simulate 350 years of deltaic evolution under three different SLR trajectories: steady rise, an abrupt change in SLR rate, and a gradual acceleration of SLR. For each SLR trajectory, we test a set of six final SLR magnitudes between 5 and 40 mm/yr, in addition to control runs with no SLR. We find that both surface channel dynamics as well as aspects of the subsurface change in response to higher rates of SLR, even over centennial timescales. In particular, increased channel mobility due to SLR corresponds to higher sand connectivity in the subsurface. Both the trajectory and magnitude of SLR change influence the evolution of the delta surface, which in turn modifies the structure of the subsurface. We identify correlations between surface and subsurface properties, and find that inferences of subsurface structure from the current surface configuration should be limited to time spans over which the sea level forcing is approximately steady. As a result, this work improves our ability to predict future delta evolution and subsurface connectivity as sea levels continue to rise. 
    more » « less
  3. A prototype-scale physical model was used to study wave height attenuation through an idealized mangrove forest and the resulting reduction of wave forces and pressures on a vertical wall. An 18 m transect of a Rhizophora forest was constructed using artificial trees, considering a baseline and two mangrove stem density configurations. Wave heights seaward, throughout, and shoreward of the forest and pressures on a vertical wall landward of the forest were measured. Mangroves reduced wave-induced forces by 4%–43% for random waves and 2%–38% for regular waves. For nonbreaking wave cases, the shape of the pressure distribution was consistent, implying that the presence of the forest did not change wave-structure interaction processes. Analytical methods for determining nonbreaking wave-induced loads provided good estimations of measured values when attenuated wave heights were used in equations. The ratio of negative to positive force ranged between 0.14 and 1.04 for regular waves and 0.31 to 1.19 for random waves, indicating that seaward forces can be significant and may contribute to destabilization of seawalls during large storms. These results improve the understanding of wave-vegetation-structure interaction and inform future engineering guidelines for calculating expected design load reductions on structures sheltered by emergent vegetation. 
    more » « less
  4. Abstract Mangrove soils provide many important ecosystem services such as carbon sequestration, yet they are vulnerable to the negative impacts brought on by anthropogenic activities. Research in recent decades has shown a progressive loss of blue carbon in mangrove forests as they are converted to aquaculture, agriculture, and urban development. We seek to study the relationship between human population density and soil carbon stocks in urban mangrove forests to quantify their role in the global carbon budget. To this end, we conducted a global analysis, collecting mangrove soil carbon data from previous studies and calculating population density for each study location utilizing a recent database from the European Commission. Results indicate population density has a negative association with mangrove soil carbon stocks. When human population density reaches 300 people km−2, which is defined as ‘urban domains’ in the European Commission database, mangrove soil carbon is estimated to be lower than isolated mangrove forests by 37%. Nonetheless, after accounting for climatic factors in the model, we see the negative relationship between population density and soil carbon is reduced and is even non-significant in mixed effects models. This suggests population density is not a good measure for the direct effects of humans on mangrove ecosystems and further implies mangrove ecosystems in close proximity to very high population density can still possess valuable carbon stocks. Our work provides a better understanding of how soil carbon stocks in existing mangrove forests correlate with different levels of population density, underscores the importance of protecting existing mangroves and especially those in areas with high human population density, and calls for further studies on the association between human activities and mangrove forest carbon stocks. 
    more » « less
  5. Abstract Mangroves are considered one of the most productive ecosystems in the world with significant contributions as carbon sinks in the biosphere. Yet few attempts have been made to assess global patterns in mangrove net primary productivity, except for a few assumptions relating litterfall rates to variation in latitude. We combined geophysical and climatic variables to predict mangrove litterfall rates at continental scale. On a per‐area basis, carbon flux in litterfall in the neotropics is estimated at 5 MgC·ha−1·yr−1, between 20% and 50% higher than previous estimates. Annual carbon fixed in mangrove litterfall in the neotropics is estimated at 11.5 TgC, which suggests that current global litterfall estimates extrapolated from mean reference values may have been underestimated by at least 5%. About 5.8 TgC of this total carbon fixed in the neotropics is exported to estuaries and coastal oceans, which is nearly 30% of global carbon export by tides. We provide the first attempt to quantify and map the spatial variability of carbon fixed in litterfall in mangrove forests at continental scale in response to geophysical and climatic environmental drivers. Our results strengthen the global carbon budget for coastal wetlands, providing blue carbon scientists and coastal policy makers with a more accurate representation of the potential of mangroves to offset carbon dioxide emissions. 
    more » « less