skip to main content


This content will become publicly available on December 1, 2024

Title: Interplay between Kondo and magnetic interactions in Pr0.75Gd0.25ScGeH
Combined experimental and density functional theory (DFT) study of Pr0.75Gd0.25ScGe and its hydride (Pr0.75Gd0.25ScGeH) reveals intricacies of composition-structure-property relationships in those distinctly layered compounds. Hydrogenation of the intermetallic parent, crystalizing in a tetragonal CeScSi-type structure, leads to an anisotropic volume expansion, that is, a(=b) lattice parameter decreases while the lattice expands along the c direction, yielding a net increase of cell volume. DFT calculations predict an antiparallel coupling of localized Gd and Pr magnetic moments in both materials at the ground state. While experiments corroborate this for the parent compound, there is no conclusive experimental proof for the hydride, where Pr moments do not order down to 3 K. DFT results also reveal that rare-earth – hydrogen interactions reduce spin-polarization of the Pr and Gd 5d and Sc 3d states at the Fermi energy, disrupt indirect exchange interactions mediated by conduction electrons, dramatically reduce the magnetic ordering temperature, and open a pseudo-gap in the majority-spin channel. Both experiments and theory show evidence of Kondo-like behavior in the hydride in the absence of an applied magnetic field, whereas increasing the field promotes magnetic ordering and suppresses Kondo-like behavior.  more » « less
Award ID(s):
1944551
NSF-PAR ID:
10487536
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Alloys and Compounds
Volume:
966
Issue:
C
ISSN:
0925-8388
Page Range / eLocation ID:
171351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Both aliovalent doping and the charge state of multivalent lattice ions determine the oxygen non-stoichiometry ( δ ) of mixed ionic and electronic conductors (MIECs). Unfortunately, it has been challenging for both modeling and experiments to determine the multivalent ion charge states in MIECs. Here, the Fe charge state distribution was determined for various compositions and phases of the MIEC La 1−x Sr x FeO 3−δ (LSF) using the spin-polarized density functional theory (DFT)-predicted magnetic moments on Fe. It was found that electron occupancy and crystal-field-splitting-induced differences between the Fe 3d-orbitals of the square pyramidally coordinated, oxygen-vacancy-adjacent Fe atoms and the octahedrally-coordinated, oxygen-vacancy-distant-Fe atoms determined whether the excess electrons produced during oxygen vacancy formation remained localized at the first nearest neighbor Fe atoms (resulting in small oxygen vacancy polarons, as in LaFeO 3 ) or were distributed to the second-nearest-neighbor Fe atoms (resulting in large oxygen vacancy polarons, as in SrFeO 3 ). The progressively larger polaron size and anisotropic shape changes with increasing Sr resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical δ threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations cause a decrease in the mobile oxygen vacancy site fraction ( X ), both δ and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach. 
    more » « less
  2. Abstract Magnetic and electronic properties of quantum materials heavily rely on the crystal structure even in the same chemical compositions. In this study, it is demonstrated that a layered tetragonal EuCd 2 Sb 2 structure can be obtained by treating bulk trigonal EuCd 2 Sb 2 under high pressure (6 GPa) and high temperature (600 °C). Magnetization measurements of the newly formed layered tetragonal EuCd 2 Sb 2 confirm an antiferromagnetic ordering with Neel temperature ( T N ) around 16 K, which is significantly higher than that ( T N ≈ 7 K) of trigonal EuCd 2 Sb 2 , consistent with heat capacity measurements. Moreover, bad metal behavior is observed in the temperature dependence of the electrical resistivity and the resistivity shows a dramatic increase around the Neel temperature. Electronic structure calculations with local density approximation dynamic mean–field theory (LDA+DMFT) show that this material is strongly correlated with well‐formed large magnetic moments, due to Hund's coupling, which is known to dramatically suppress the Kondo scale. 
    more » « less
  3. Abstract

    Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatial nanoscale patterns display a fractal geometry with power-law behavior extended over two decades, consistent with being in proximity to a critical point. Our discovery reveals a nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.

     
    more » « less
  4. The structure of a series of lanthanide iron cobalt perovskite oxides, R (Fe 0.5 Co 0.5 )O 3 ( R = Pr, Nd, Sm, Eu, and Gd), have been investigated. The space group of these compounds was confirmed to be orthorhombic Pnma (No. 62), Z = 4. From Pr to Gd, the lattice parameter a varies from 5.466 35(13) Å to 5.507 10(13) Å, b from 7.7018(2) to 7.561 75(13) Å, c from 5.443 38(10) to 5.292 00(8) Å, and unit-cell volume V from 229.170(9) Å 3 to 220.376(9) Å 3 , respectively. While the trend of V follows the trend of the lanthanide contraction, the lattice parameter “ a ” increases as the ionic radius r ( R 3+ ) decreases. X-ray diffraction (XRD) and transmission electron microscopy confirm that Fe and Co are disordered over the octahedral sites. The structure distortion of these compounds is evidenced in the tilt angles θ, ϕ , and ω , which represent rotations of an octahedron about the pseudocubic perovskite [110] p , [001] p , and [111] p axes. All three tilt angles increase across the lanthanide series (for R = Pr to R = Gd: θ increases from 12.3° to 15.2°, ϕ from 7.5° to 15.8°, and ω from 14.4° to 21.7°), indicating a greater octahedral distortion as r ( R 3+ ) decreases. The bond valence sum for the sixfold (Fe/Co) site and the eightfold R site of R (Fe 0.5 Co 0.5 )O 3 reveal no significant bond strain. Density Functional Theory calculations for Pr(Fe 0.5 Co 0.5 )O 3 support the disorder of Fe and Co and suggest that this compound to be a narrow band gap semiconductor. XRD patterns of the R (Fe 0.5 Co 0.5 )O 3 samples were submitted to the Powder Diffraction File. 
    more » « less
  5. Abstract Magnetic order in most materials occurs when magnetic ions with finite moments arrange in a particular pattern below the ordering temperature. Intriguingly, if the crystal electric field (CEF) effect results in a spin-singlet ground state, a magnetic order can still occur due to the exchange interactions between neighboring ions admixing the excited CEF levels. The magnetic excitations in such a state are spin excitons generally dispersionless in reciprocal space. Here we use neutron scattering to study stoichiometric Ni 2 Mo 3 O 8 , where Ni 2+ ions form a bipartite honeycomb lattice comprised of two triangular lattices, with ions subject to the tetrahedral and octahedral crystalline environment, respectively. We find that in both types of ions, the CEF excitations have nonmagnetic singlet ground states, yet the material has magnetic order. Furthermore, CEF spin excitons from the tetrahedral sites form a dispersive diffusive pattern around the Brillouin zone boundary, likely due to spin entanglement and geometric frustrations. 
    more » « less