skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming
Abstract The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.  more » « less
Award ID(s):
1750113
PAR ID:
10487607
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Ecology & Evolution
Volume:
8
Issue:
3
ISSN:
2397-334X
Format(s):
Medium: X Size: p. 500-510
Size(s):
p. 500-510
Sponsoring Org:
National Science Foundation
More Like this
  1. Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch . We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage. 
    more » « less
  2. How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species,Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait—pupal development rate—we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance. 
    more » « less
  3. Abstract AimInvasive species are ideal systems for testing geographical differences in performance traits and measuring evolutionary responses as a species spreads across divergent climates and habitats. The European gypsy moth,Lymantria dispar disparL. (Lepidoptera: Erebidae), is a generalist forest defoliator introduced to Medford, Massachusetts, USA in 1869. The invasion front extends from Minnesota to North Carolina and the ability of this species to adapt to local climate may contribute to its continuing spread. We evaluated the performance of populations along the climatic gradient of the invasion front to test for a relationship between climate and ecologically important performance traits. LocationEastern United States of America TaxonLymantria dispar disparL. (Lepidoptera: Erebidae) MethodsInsects from 14 populations across the US invasion front and interior of the invasive range were reared from hatch to adult emergence in six constant temperature treatments. The responses of survival, pupal mass and larval development time were analysed as a function of source climate (annual mean normal temperature), rearing temperature and their interaction using multiple polynomial regression. ResultsWith the exception of female development time, there were no significant interactions between source climate and rearing temperature, indicating little divergence in the shape of thermal reaction norms among populations. Source population and rearing temperature were significant predictors of survival and pupal mass. Independent of rearing temperature, populations from warmer climates had lower survival than those from colder climates, but attained larger body size despite similar development times. Larval development time was dependent on rearing temperature, but there were not consistent relationships with source climate. Main ConclusionsThermal adaptation can be an important factor shaping the spread of invasive species, particularly in the context of climate change. Our results suggest thatL. d. disparis highly plastic, but has undergone climate‐related adaptation in thermal performance and life‐history traits as it spread across North America. 
    more » « less
  4. Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m -2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m -2 ), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr -1 at the notch to 0.79 and 0.87 yr -1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L ∞ , von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, on platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes. 
    more » « less
  5. Innate, infection-preventing resistance often varies between host life stages. Juveniles are more resistant than adults in some species, whereas the opposite pattern is true in others. This variation cannot always be explained by prior exposure or physiological constraints and so it has been hypothesized that trade-offs with other life-history traits may be involved. However, little is known about how trade-offs between various life-history traits and resistance at different life stages affect the evolution of age-specific resistance. Here, we use a mathematical model to explore how trade-offs with natural mortality, reproduction and maturation combine to affect the evolution of resistance at different life stages. Our results show that certain combinations of trade-offs have substantial effects on whether adults or juveniles are more resistant, with trade-offs between juvenile resistance and adult reproduction inherently more costly than trade-offs involving maturation or mortality (all else being equal), resulting in consistent evolution of lower resistance at the juvenile stage even when infection causes a lifelong fecundity reduction. Our model demonstrates how the differences between patterns of age-structured resistance seen in nature may be explained by variation in the trade-offs involved and our results suggest conditions under which trade-offs tend to select for lower resistance in juveniles than adults. 
    more » « less