skip to main content


Search for: All records

Award ID contains: 1750113

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Anopheles stephensiis a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of bothPlasmodium falciparumandPlasmodium vivaxmalaria. Perhaps most alarming, the characteristics ofAn.stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk.

    Methods

    In this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission byAn.stephensiwere created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations.

    Results

    Using the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability withAn.stephensipresence. General patterns of poleward expansion for thermal suitability were seen for bothP.falciparumandP.vivaxtransmission potential.

    Conclusions

    Understanding the potential suitability forAn.stephensitransmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring.

     
    more » « less
  2. Abstract

    In ecology, it is common for processes to be bounded based on physical constraints of the system. One common example is the positivity constraint, which applies to phenomena such as duration times, population sizes, and total stock of a system’s commodity. In this paper, we propose a novel method for parameterizing Lognormal state space models using an approach based on moment matching. Our method enforces the positivity constraint, allows for arbitrary mean evolution and variance structure, and has a closed-form Markov transition density which allows for more flexibility in fitting techniques. We discuss two existing Lognormal state space models and examine how they differ from the method presented here. We use 180 synthetic datasets to compare the forecasting performance under model misspecification and assess the estimation of precision parameters between our method and existing methods. We find that our models perform well under misspecification, and that fixing the observation variance both helps to improve estimation of the process variance and improves forecast performance. To test our method on a difficult problem, we compare the predictive performance of two Lognormal state space models in predicting the Leaf Area Index over a 151 day horizon by using a process-based ecosystem model to describe the temporal dynamics. We find that our moment matching model performs better than its competitor, and is better suited for intermediate predictive horizons. Overall, our study helps to inform practitioners about the importance of incorporating sensible dynamics when using models of complex systems to predict out-of-sample.

     
    more » « less
  3. Abstract

    Hierarchical probability models are being used more often than non-hierarchical deterministic process models in environmental prediction and forecasting, and Bayesian approaches to fitting such models are becoming increasingly popular. In particular, models describing ecosystem dynamics with multiple states that are autoregressive at each step in time can be treated as statistical state space models (SSMs). In this paper, we examine this subset of ecosystem models, embed a process-based ecosystem model into an SSM, and give closed form Gibbs sampling updates for latent states and process precision parameters when process and observation errors are normally distributed. Here, we use simulated data from an example model (DALECev) and study the effects changing the temporal resolution of observations on the states (observation data gaps), the temporal resolution of the state process (model time step), and the level of aggregation of observations on fluxes (measurements of transfer rates on the state process). We show that parameter estimates become unreliable as temporal gaps between observed state data increase. To improve parameter estimates, we introduce a method of tuning the time resolution of the latent states while still using higher-frequency driver information and show that this helps to improve estimates. Further, we show that data cloning is a suitable method for assessing parameter identifiability in this class of models. Overall, our study helps inform the application of state space models to ecological forecasting applications where (1) data are not available for all states and transfers at the operational time step for the ecosystem model and (2) process uncertainty estimation is desired.

     
    more » « less
  4. Abstract

    Extrinsic environmental factors influence the spatiotemporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector‐borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of ectothermic insects. A mechanistic understanding of how temperature impacts traits of ectotherms, and thus the distribution of ectotherms and vector‐borne infections, is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically nonlinear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites,Plasmodium falciparumandPlasmodium vivax, by two malaria vector species,Anopheles gambiaeandAnopheles stephensi. We model the nonlinear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, proportion of eggs surviving to adulthood, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito–parasite combinations assessed in this study, but may differ at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (A. stephensi) and between mosquitoes carryingP. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g.,A. stephensiandA. gambiaeboth withP. falciparum). Using prevalence data, we show that the transmission suitability metric calculated from our mechanistic model is consistent with observedP. falciparumprevalence in Africa and Asia but is equivocal forP. vivaxprevalence in Asia, and inconsistent withP. vivaxprevalence in Africa. We mapped risk to illustrate the number of months various areas in Africa and Asia predicted to be suitable for malaria transmission based on this suitability metric. This mapping provides spatially explicit predictions for suitability and transmission risk.

     
    more » « less
  5. Abstract

    Environmental temperature is a crucial abiotic factor that influences the success of ectothermic organisms, including hosts and pathogens in disease systems. One example is the amphibian chytrid fungus,Batrachochytrium dendrobatidis(Bd), which has led to widespread amphibian population declines. Understanding its thermal ecology is essential to effectively predict outbreaks. Studies that examine the impact of temperature on hosts and pathogens often do so in controlled constant temperatures. Although varying temperature experiments are becoming increasingly common, it is unrealistic to test every temperature scenario. Thus, reliable methods that use constant temperature data to predict performance in varying temperatures are needed. In this study, we tested whether we could accurately predictBdgrowth in three varying temperature regimes, using a Bayesian hierarchical model fit with constant temperatureBdgrowth data. We fit the Bayesian hierarchical model five times, each time changing the thermal performance curve (TPC) used to constrain the logistic growth rate to determine how TPCs influence the predictions. We then validated the model predictions usingBdgrowth data collected from the three tested varying temperature regimes. Although all TPCs overpredictedBdgrowth in the varying temperature regimes, some functional forms performed better than others. Varying temperature impacts on disease systems are still not well understood and improving our understanding and methodologies to predict these effects could provide insights into disease systems and help conservation efforts.

     
    more » « less
  6. Abstract

    Predicting where crop pests and diseases can occur, both now and in the future under different climate change scenarios, is a major challenge for crop management. One solution is to estimate the fundamental thermal niche of the pest/disease to indicate where establishment is possible. Here, we develop methods for estimating and displaying the fundamental thermal niche of pests and pathogens and apply these methods to Huanglongbing (HLB), a vector‐borne disease that is currently threatening the citrus industry worldwide.

    We derive a suitability metric based on a mathematical model of HLB transmission between tree hosts and its vectorDiaphorina citri, and incorporate the effect of temperature on vector traits using data from laboratory experiments performed at different temperatures. We validate the model using data on the historical range of HLB.

    Our model predicts that transmission of HLB is possible between 16 and 33°C with peak transmission at ~25°C. The greatest uncertainty in our suitability metric is associated with the mortality of the vectors at peak transmission, and fecundity at the edges of the thermal range, indicating that these parameters need further experimental work.

    We produce global thermal niche maps by plotting how many months each location is suitable for establishment of the pest/disease. This analysis reveals that the highest suitability for HLB occurs near the equator in large citrus‐producing regions, such as Brazil and South‐East Asia. Within the Northern Hemisphere, the Iberian peninsula and California are HLB suitable for up to 7 months of the year and are free of HLB currently.

    Policy implications. We create a thermal niche map which indicates the places at greatest risk of establishment should a crop disease or pest enter these regions. This indicates where surveillance should be focused to prevent establishment. Our mechanistic method can be used to predict new areas for Huanglongbing transmission under different climate change scenarios and is easily adapted to other vector‐borne diseases and crop pests.

     
    more » « less
  7. Skin microbial communities are an essential part of host health and can play a role in mitigating disease. Host and environmental factors can shape and alter these microbial communities and, therefore, we need to understand to what extent these factors influence microbial communities and how this can impact disease dynamics. Microbial communities have been studied in amphibian systems due to skin microbial communities providing some resistance to the amphibian chytrid fungus, Batrachochytrium dendrobatidis . However, we are only starting to understand how host and environmental factors shape these communities for amphibians. In this study, we examined whether amphibian skin bacterial communities differ among host species, host infection status, host developmental stage, and host habitat. We collected skin swabs from tadpoles and adults of three Ranid frog species ( Lithobates spp.) at the Mianus River Gorge Preserve in Bedford, New York, USA, and used 16S rRNA gene amplicon sequencing to determine bacterial community composition. Our analysis suggests amphibian skin bacterial communities change across host developmental stages, as has been documented previously. Additionally, we found that skin bacterial communities differed among Ranid species, with skin communities on the host species captured in streams or bogs differing from the communities of the species captured on land. Thus, habitat use of different species may drive differences in host-associated microbial communities for closely-related host species. 
    more » « less
  8. Abstract The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector–host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into S ( T ), a transmission suitability metric derived from the disease’s basic reproductive number, $$R_0.$$ R 0 . This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15 $$^{\circ }$$ ∘ C and $$34^{\circ }\hbox { C}$$ 34 ∘ C , with predicted peak transmission risk at 26 $$^\circ$$ ∘  C. The greatest uncertainty in S ( T ) is associated with the following: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges’ probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of disease establishment. 
    more » « less