skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online variable-length source coding for minimum bitrate LQG control
We propose an adaptive coding approach to achieve linear-quadratic-Gaussian (LQG) control with near- minimum bitrate prefix-free feedback. Our approach combines a recent analysis of a quantizer design for minimum rate LQG control with work on universal lossless source coding for sources on countable alphabets. In the aforementioned quantizer design, it was established that the quantizer outputs are an asymp- totically stationary, ergodic process. To enable LQG control with provably near-minimum bitrate, the quantizer outputs must be encoded into binary codewords efficiently. This is possible given knowledge of the probability distributions of the quantizer outputs, or of their limiting distribution. Obtaining such knowledge is challenging; the distributions do not readily admit closed form descriptions. This motivates the application of universal source coding. Our main theoretical contribution in this work is a proof that (after an invertible transformation), the quantizer outputs are random variables that fall within an exponential or power-law envelope class (depending on the plant dimension). Using ideas from universal coding on envelope classes, we develop a practical, zero-delay version of these algorithms that operates with fixed precision arithmetic. We evaluate the performance of this algorithm numerically, and demonstrate competitive results with respect to fundamental tradeoffs between bitrate and LQG control performance.  more » « less
Award ID(s):
1944318
PAR ID:
10487688
Author(s) / Creator(s):
; ;
Publisher / Repository:
Arxiv of Cornell University
Date Published:
Journal Name:
2023 IEEE Conference on Decision and Control
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work we consider discrete-time multiple-input multiple-output (MIMO) linear-quadratic-Gaussian (LQG) control where the feedback consists of variable length binary codewords. To simplify the decoder architecture, we enforce a strict prefix constraint on the codewords. We develop a data compression architecture that provably achieves a near minimum time-average expected bitrate for a fixed constraint on the LQG performance. The architecture conforms to the strict prefix constraint and does not require time-varying lossless source coding, in contrast to the prior art. 
    more » « less
  2. In this letter, we consider a Linear Quadratic Gaussian (LQG) control system where feedback occurs over a noiseless binary channel and derive lower bounds on the minimum communication cost (quantified via the channel bitrate) required to attain a given control performance. We assume that at every time step an encoder can convey a packet containing a variable number of bits over the channel to a decoder at the controller. Our system model provides for the possibility that the encoder and decoder have shared randomness, as is the case in systems using dithered quantizers. We define two extremal prefix-free requirements that may be imposed on the message packets; such constraints are useful in that they allow the decoder, and potentially other agents to uniquely identify the end of a transmission in an online fashion. We then derive a lower bound on the rate of prefix-free coding in terms of directed information; in particular we show that a previously known bound still holds in the case with shared randomness. We generalize the bound for when prefix constraints are relaxed, and conclude with a rate-distortion formulation. 
    more » « less
  3. In this article, we revisit the sequential source-coding framework to analyze fundamental performance limitations of discrete-time stochastic control systems subject to feedback data-rate constraints in finite-time horizon. The basis of our results is a new characterization of the lower bound on the minimum total-rate achieved by sequential codes subject to a total (across time) distortion constraint and a computational algorithm that allocates optimally the rate-distortion, for a given distortion level, at each instant of time and any fixed finite-time horizon. The idea behind this characterization facilitates the derivation of analytical , nonasymptotic , and finite-dimensional lower and upper bounds in two control-related scenarios: a) A parallel time-varying Gauss–Markov process with identically distributed spatial components that are quantized and transmitted through a noiseless channel to a minimum mean-squared error decoder; and b) a time-varying quantized linear quadratic Gaussian (LQG) closed-loop control system, with identically distributed spatial components and with a random data-rate allocation. Our nonasymptotic lower bound on the quantized LQG control problem reveals the absolute minimum data-rates for (mean square) stability of our time-varying plant for any fixed finite-time horizon. We supplement our framework with illustrative simulation experiments. 
    more » « less
  4. In this work, we study an LQG control system where one of two feedback channels is discrete and incurs a communication cost. We assume that a decoder (co-located with the controller) can make noiseless measurements of a subset of the state vector (referred to as side information) meanwhile a remote encoder (co-located with a sensor) can make arbitrary measurements of the entire state vector, but must convey its measurements to the decoder over a noiseless binary channel. Use of the channel incurs a communication cost, quantified as the time-averaged expected length of prefix-free binary codeword. We study the tradeoff between the communication cost and control performance. The formulation motivates a constrained directed information minimization problem, which can be solved via convex optimization. Using the optimization, we propose a quantizer design and a subsequent achievability result. 
    more » « less
  5. We study the task of learning state representations from potentially high-dimensional observations, with the goal of controlling an unknown partially observable system. We pursue a direct latent model learning approach, where a dynamic model in some latent state space is learned by predicting quantities directly related to planning (e.g., costs) without reconstructing the observations. In particular, we focus on an intuitive cost-driven state representation learning method for solving Linear Quadratic Gaussian (LQG) control, one of the most fundamental partially observable control problems. As our main results, we establish finite-sample guarantees of finding a near-optimal state representation function and a near-optimal controller using the directly learned latent model. To the best of our knowledge, despite various empirical successes, prior to this work it was unclear if such a cost-driven latent model learner enjoys finite-sample guarantees. Our work underscores the value of predicting multi-step costs, an idea that is key to our theory, and notably also an idea that is known to be empirically valuable for learning state representations. 
    more » « less