skip to main content


Search for: All records

Award ID contains: 1944318

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although perception is an increasingly dominant portion of the overall computational cost for autonomous systems, only a fraction of the information perceived is likely to be relevant to the current task. To alleviate these perception costs, we develop a novel simultaneous perception–action design framework wherein an agent senses only the task-relevant information. This formulation differs from that of a partially observable Markov decision process, since the agent is free to synthesize not only its policy for action selection but also its belief-dependent observation function. The method enables the agent to balance its perception costs with those incurred by operating in its environment. To obtain a computationally tractable solution, we approximate the value function using a novel method of invariant finite belief sets, wherein the agent acts exclusively on a finite subset of the continuous belief space. We solve the approximate problem through value iteration in which a linear program is solved individually for each belief state in the set, in each iteration. Finally, we prove that the value functions, under an assumption on their structure, converge to their continuous state-space values as the sample density increases. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  2. Although perception is an increasingly dominant portion of the overall computational cost for autonomous systems, only a fraction of the information perceived is likely to be relevant to the current task. To alleviate these perception costs, we develop a novel simultaneous perception–action design framework wherein an agent senses only the task-relevant information. This formulation differs from that of a partially observable Markov decision process, since the agent is free to synthesize not only its policy for action selection but also its belief-dependent observation function. The method enables the agent to balance its perception costs with those incurred by operating in its environment. To obtain a computationally tractable solution, we approximate the value function using a novel method of invariant finite belief sets, wherein the agent acts exclusively on a finite subset of the continuous belief space. We solve the approximate problem through value iteration in which a linear program is solved individually for each belief state in the set, in each iteration. Finally, we prove that the value functions, under an assumption on their structure, converge to their continuous state-space values as the sample density increases. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  3. Although perception is an increasingly dominant portion of the overall computational cost for autonomous systems, only a fraction of the information perceived is likely to be relevant to the current task. To alleviate these perception costs, we develop a novel simultaneous perception–action design framework wherein an agent senses only the task-relevant information. This formulation differs from that of a partially observable Markov decision process, since the agent is free to synthesize not only its policy for action selection but also its belief-dependent observation function. The method enables the agent to balance its perception costs with those incurred by operating in its environment. To obtain a computationally tractable solution, we approximate the value function using a novel method of invariant finite belief sets, wherein the agent acts exclusively on a finite subset of the continuous belief space. We solve the approximate problem through value iteration in which a linear program is solved individually for each belief state in the set, in each iteration. Finally, we prove that the value functions, under an assumption on their structure, converge to their continuous state-space values as the sample density increases. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  4. The global trend of energy deregulation has led to the market mechanism replacing some functionality of load frequency control (LFC). Accordingly, information exchange among participating generators and the market operator plays a crucial role in optimizing social utility. However, privacy has been an equally pressing concern in such settings. This conflict between individuals’ privacy and social utility has been a long-standing challenge in market mechanism literature as well as in Cyber-Physical Systems (CPSs). In this paper, we propose a novel encrypted market architecture that leverages a hybrid encryption method and two-party computation protocols, enabling the secure synthesis and implementation of an optimal price based market mechanism. This work spotlights the importance of secure and efficient outsourcing of controller synthesis, which is a critical element within the proposed framework. A two-area LFC model is used to conduct a case study. 
    more » « less
  5. We propose an adaptive coding approach to achieve linear-quadratic-Gaussian (LQG) control with near- minimum bitrate prefix-free feedback. Our approach combines a recent analysis of a quantizer design for minimum rate LQG control with work on universal lossless source coding for sources on countable alphabets. In the aforementioned quantizer design, it was established that the quantizer outputs are an asymp- totically stationary, ergodic process. To enable LQG control with provably near-minimum bitrate, the quantizer outputs must be encoded into binary codewords efficiently. This is possible given knowledge of the probability distributions of the quantizer outputs, or of their limiting distribution. Obtaining such knowledge is challenging; the distributions do not readily admit closed form descriptions. This motivates the application of universal source coding. Our main theoretical contribution in this work is a proof that (after an invertible transformation), the quantizer outputs are random variables that fall within an exponential or power-law envelope class (depending on the plant dimension). Using ideas from universal coding on envelope classes, we develop a practical, zero-delay version of these algorithms that operates with fixed precision arithmetic. We evaluate the performance of this algorithm numerically, and demonstrate competitive results with respect to fundamental tradeoffs between bitrate and LQG control performance. 
    more » « less
  6. In this work we consider discrete-time multiple-input multiple-output (MIMO) linear-quadratic-Gaussian (LQG) control where the feedback consists of variable length binary codewords. To simplify the decoder architecture, we enforce a strict prefix constraint on the codewords. We develop a data compression architecture that provably achieves a near minimum time-average expected bitrate for a fixed constraint on the LQG performance. The architecture conforms to the strict prefix constraint and does not require time-varying lossless source coding, in contrast to the prior art. 
    more » « less
  7. We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agent’s trajectories to an outside observer while guaranteeing the completion of a task expressed by a reward function. Focusing on finite-state controllers (FSCs) with deterministic memory transitions, we show that the maximum entropy of a POMDP is lower bounded by the maximum entropy of the parameteric Markov chain (pMC) induced by such FSCs. This relationship allows us to recast the entropy maximization problem as a so-called parameter synthesis problem for the induced pMC. We then present an algorithm to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same number of memory states. In a numerical example, we highlight the benefit of using an entropy-maximizing FSC compared with an FSC that simply finds a feasible policy for accomplishing a task. 
    more » « less
  8. We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agent’s trajectories to an outside observer while guaranteeing the completion of a task expressed by a reward function. Focusing on finite-state controllers (FSCs) with deterministic memory transitions, we show that the maximum entropy of a POMDP is lower bounded by the maximum entropy of the parameteric Markov chain (pMC) induced by such FSCs. This relationship allows us to recast the entropy maximization problem as a so-called parameter synthesis problem for the induced pMC. We then present an algorithm to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same number of memory states. In a numerical example, we highlight the benefit of using an entropy-maximizing FSC compared with an FSC that simply finds a feasible policy for accomplishing a task. 
    more » « less
  9. We consider the scenario in which a continuous-time Gauss-Markov process is estimated by the Kalman-Bucy filter over a Gaussian channel (sensor) with a variable sensor gain. The problem of scheduling the sensor gain over a finite time interval to minimize the weighted sum of the data rate (the mutual information between the sensor output and the underlying Gauss-Markov process) and the distortion (the mean-square estimation error) is formulated as an optimal control problem. A necessary optimality condition for a scheduled sensor gain is derived based on Pontryagin’s minimum principle. For a scalar problem, we show that an optimal sensor gain control is of bang-bang type, except the possibility of taking an intermediate value when there exists a stationary point on the switching surface in the phase space of canonical dynamics. Furthermore, we show that the number of switches is at most two and the time instants at which the optimal gain must be switched can be computed from the analytical solutions to the canonical equations. 
    more » « less