Providing demonstrable and quantifiable evidence to substantiate the value of Marine Protected Areas like National Marine Sanctuaries is important for understanding their role in the blue economy, as well as gaining management and financial support for their protection. This study employs economic contribution analysis to estimate the economic contributions of ocean recreation spending of visitors to Gray’s Reef National Marine Sanctuary (GRNMS) and the coastal Georgia region. Employing economic contribution analysis is found to be more useful in influencing stakeholder decisions, and can therefore be a useful tool in providing inputs for management decisions related to marine protected areas. This study shows that visitors to coastal Georgia spent about USD 1.4 billion on ocean recreation activities in a single year. This translates to a total economic contribution of 18,950 jobs, USD 603 million labor income, USD 938 million value added, and USD 1.8 billion output. About USD 123 million of the total visitor spending can be attributed to GRNMS, contributing 1702 total jobs, USD 54 million in total labor income, USD 84 million in total value added, and USD 159 million in total output. This study highlights the importance of coastal Georgia and GRNMS as economic drivers of the region’s economy, supporting the need for continued management and investment in the Sanctuary and its resources.
more »
« less
Visitors’ Environmental Concerns in Gray’s Reef National Marine Sanctuary: An Offshore Marine Protected Area
Marine sanctuaries serve as popular destinations for ecotourism, natural resource exploration, and recreation across the US. While often positive, visitation in marine and coastal areas can cause ecological threats to these ecosystems. Increased visitation in marine environments has led to the need for management due to negative ecological and social impacts. Understanding environmental values, attitudes, and perceptions is important to the success of environmental protection. Using online surveys sent via Qualtrics asking questions regarding the users’ knowledge, attitudes, and perceptions of ocean resources, goods and services, this research focused on identifying user profiles and understanding their environmental perception associated with Gray’s Reef National Marine Sanctuary, an offshore marine protected area, and surrounding coastal Georgia. The results show that across multiple types of threats or phenomena, respondents are most concerned about threats to resources related to pollution. Furthermore, they support marine protection and are willing to adjust their consumption habits, such as recycling and energy use, to ensure the sustainable use of ocean resources. The inclusion of insights achieved through research about visitor perceptions into management decision making and planning can positively contribute to the success of environmental protection.
more »
« less
- Award ID(s):
- 2137826
- PAR ID:
- 10487713
- Publisher / Repository:
- MDPI, Water
- Date Published:
- Journal Name:
- Water
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 1425
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (bothin situand in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales.more » « less
-
null (Ed.)The socio-ecological systems (SESs) framework provides cross-disciplinary insight into complex environmental problems. Numerous studies have applied the SES framework to coastal and marine environments over the last two decades. We review and analyze 98 of those studies to (i) describe how SES concepts were examined and measured, (ii) describe how the studies included feedbacks and thresholds, and (iii) identify and analyze elements unique to coastal and marine SES frameworks. We find that progress has been made in understanding key SES properties in coastal and marine ecosystems, which include resilience, adaptive capacity, vulnerability, and governance. A variety of methods has been developed and applied to analyze these features qualitatively and quantitatively. We also find that recent studies have incorporated land-based stressors in their analyses of coastal issues related to nutrient runoff, bacterial pollution, and management of anadromous species to represent explicit links in land-to-sea continuums. However, the literature has yet to identify methods and data that can be used to provide causal evidence of non-linearities and thresholds within SES. In addition, our findings suggest that greater alignment and consistency are needed in models with regard to metrics and spatial boundaries between ecological and social systems to take full advantage of the SES framework and improve coastal and marine management.more » « less
-
Rising atmospheric carbon dioxide (CO 2 ) levels, from fossil fuel combustion and deforestation, along with agriculture and land-use practices are causing wholesale increases in seawater CO 2 and inorganic carbon levels; reductions in pH; and alterations in acid-base chemistry of estuarine, coastal, and surface open-ocean waters. On the basis of laboratory experiments and field studies of naturally elevated CO 2 marine environments, widespread biological impacts of human-driven ocean acidification have been posited, ranging from changes in organism physiology and population dynamics to altered communities and ecosystems. Acidification, in conjunction with other climate change–related environmental stresses, particularly under future climate change and further elevated atmospheric CO 2 levels, potentially puts at risk many of the valuable ecosystem services that the ocean provides to society, such as fisheries, aquaculture, and shoreline protection. This review emphasizes both current scientific understanding and knowledge gaps, highlighting directions for future research and recognizing the information needs of policymakers and stakeholders. Expected final online publication date for the Annual Review of Environment and Resources, Volume 45 is October 19, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.more » « less
An official website of the United States government

