Being able to electrically manipulate the magnetic properties in recently discovered van der Waals ferromagnets is essential for their integration in future spintronics devices. Here, the magnetization of a semiconducting 2D ferromagnet, i.e., Cr2Ge2Te6, is studied using the anomalous Hall effect in Cr2Ge2Te6/tantalum heterostructures. The thinner the flakes, hysteresis and remanence in the magnetization loop with out‐of‐plane magnetic fields become more prominent. In order to manipulate the magnetization in such thin flakes, a combination of an in‐plane magnetic field and a charge current flowing through Ta—a heavy metal exhibiting giant spin Hall effect—is used. In the presence of in‐plane fields of 20 mT, charge current densities as low as 5 × 105A cm–2are sufficient to switch the out‐of‐plane magnetization of Cr2Ge2Te6. This finding highlights that current densities required for spin‐orbit torque switching of Cr2Ge2Te6are about two orders of magnitude lower than those required for switching nonlayered metallic ferromagnets such as CoFeB. The results presented here show the potential of 2D ferromagnets for low‐power memory and logic applications.
Two-dimensional (2D) materials have drawn immense interests in scientific and technological communities, owing to their extraordinary properties and their tunability by gating, proximity, strain and external fields. For electronic applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compatible with large scale synthesis. Here we demonstrate air stable field effect transistors using atomically thin few-layer PdSe2sheets that are sandwiched between hexagonal BN (hBN), with large saturation current > 350 μA/μm, and high field effect mobilities of ~ 700 and 10,000 cm2/Vs at 300 K and 2 K, respectively. At low temperatures, magnetotransport studies reveal unique octets in quantum oscillations that persist at all densities, arising from 2-fold spin and 4-fold valley degeneracies, which can be broken by in-plane and out-of-plane magnetic fields toward quantum Hall spin and orbital ferromagnetism.
more » « less- PAR ID:
- 10487775
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Efficient Spin‐Orbit Torque Switching of the Semiconducting Van Der Waals Ferromagnet Cr 2 Ge 2 Te 6
Abstract -
Abstract Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility.
-
Abstract Strongly correlated spin systems can be driven to quantum critical points via various routes. In particular, gapped quantum antiferromagnets can undergo phase transitions into a magnetically ordered state with applied pressure or magnetic field, acting as tuning parameters. These transitions are characterized by
z = 1 orz = 2 dynamical critical exponents, determined by the linear and quadratic low-energy dispersion of spin excitations, respectively. Employing high-frequency susceptibility and ultrasound techniques, we demonstrate that the tetragonal easy-plane quantum antiferromagnet NiCl2 ⋅ 4SC(NH2)2(aka DTN) undergoes a spin-gap closure transition at about 4.2 kbar, resulting in a pressure-induced magnetic ordering. The studies are complemented by high-pressure-electron spin-resonance measurements confirming the proposed scenario. Powder neutron diffraction measurements revealed that no lattice distortion occurs at this pressure and the high spin symmetry is preserved, establishing DTN as a perfect platform to investigatez = 1 quantum critical phenomena. The experimental observations are supported by DMRG calculations, allowing us to quantitatively describe the pressure-driven evolution of critical fields and spin-Hamiltonian parameters in DTN. -
Abstract Spin excitations, including magnons and spinons, can carry thermal energy and spin information. Studying spin‐mediated thermal transport is crucial for spin caloritronics, enabling efficient heat dissipation in microelectronics and advanced thermoelectric applications. However, designing quantum materials with controllable spin transport is challenging. Here, highly textured spin‐chain compound Ca2CuO3is synthesized using a solvent‐cast cold pressing technique, aligning 2D nanostructures with spin chains perpendicular to the pressing direction. The sample exhibits high thermal conductivity anisotropy and an excellent room‐temperature thermal conductivity of 12 ± 0.7 W m−1K−1, surpassing all polycrystalline quantum magnets. Such a high value is attributed to the significant spin‐mediated thermal conductivity of 10 ± 1 W m−1K−1, the highest reported among all polycrystalline quantum materials. Analysis through a 1D kinetic model suggests that near room‐temperature, spinon thermal transport is dominated by coupling with high‐frequency phonons, while extrinsic spinon‐defect scattering is negligible. Additionally, this method is used to prepare textured La2CuO4, exhibiting highly anisotropic magnon thermal transport and demonstrating its broad applicability. A distinct role of defect scattering in spin‐mediated thermal transport is observed in two spin systems. These findings open new avenues for designing quantum materials with controlled spin transport for thermal management and energy conversion.
-
Abstract Bose–Einstein condensation (BEC) is a quantum phenomenon in which a macroscopic number of bosons occupy the lowest energy state and acquire coherence at low temperatures. In three-dimensional antiferromagnets, a magnetic-field-induced transition has been successfully described as a magnon BEC. For a strictly two-dimensional (2D) system, it is known that BEC cannot take place due to the presence of a finite density of states at zero energy. However, in a realistic quasi-2D magnet consisting of stacked magnetic layers, a small but finite interlayer coupling stabilizes marginal BEC but such that 2D physics is still expected to dominate. This 2D-limit BEC behaviour has been reported in a few materials but only at very high magnetic fields that are difficult to access. The honeycomb
S = 1/2 Heisenberg antiferromagnet YbCl3exhibits a transition to a fully polarized state at a relatively low in-plane magnetic field. Here, we demonstrate the formation of a quantum critical 2D Bose gas at the transition field, which, with lowering the field, experiences a BEC marginally stabilized by an extremely small interlayer coupling. Our observations establish YbCl3, previously a Kitaev quantum spin liquid material, as a realization of a quantum critical BEC in the 2D limit.