skip to main content


This content will become publicly available on January 26, 2025

Title: Nonlinear Nano‐Imaging of Interlayer Coupling in 2D Graphene‐Semiconductor Heterostructures
Abstract

The emergent electronic, spin, and other quantum properties of 2D heterostructures of graphene and transition metal dichalcogenides are controlled by the underlying interlayer coupling and associated charge and energy transfer dynamics. However, these processes are sensitive to interlayer distance and crystallographic orientation, which are in turn affected by defects, grain boundaries, or other nanoscale heterogeneities. This obfuscates the distinction between interlayer charge and energy transfer. Here, nanoscale imaging in coherent four‐wave mixing (FWM) and incoherent two‐photon photoluminescence (2PPL) is combined with a tip distance‐dependent coupled rate equation model to resolve the underlying intra‐ and inter‐layer dynamics while avoiding the influence of structural heterogeneities in mono‐ to multi‐layer graphene/WSe2 heterostructures. With selective insertion of hBN spacer layers, it is shown that energy, as opposed to charge transfer, dominates the interlayer‐coupled optical response. From the distinct nano‐FWM and ‐2PPL tip‐sample distance‐dependent modification of interlayer and intralayer relaxation by tip‐induced enhancement and quenching, an interlayer energy transfer time of  ps consistent with recent reports is derived. As a local probe technique, this approach highlights the ability to determine intrinsic sample properties even in the presence of large sample heterogeneity.

 
more » « less
NSF-PAR ID:
10487869
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    2D‐on‐3D (2D/3D) perovskite heterostructures present a promising strategy to realize efficient and stable photovoltaics. However, their applicability in inverted solar cells is limited due to the quantum confinement of the 2D‐layer and solvent incompatibilities that disrupt the underlying 3D layer, hampering electron transport at the 2D/3D interface. Herein, solvent‐dependent formation dynamics and structural evolution of 2D/3D heterostructures are investigated via in situ X‐ray scattering. It is revealed that solvent interaction with the 3D surface determines the formation sequence and spatial distribution of quasi‐2D phases withn= 2–4. Isopropanol (IPA) reconstructs the perovskite into a PbI2‐rich surface, forming a strata with smallernfirst, followed by a thinner substratum of largern. In contrast, 2,2,2‐Trifluoroethanol (TFE) preserves the 3D surface, promoting the formation of uniformly distributed largerndomains first, and smallernlast. Leveraging these insights, Dion–Jacobson perovskites are used with superior charge transport properties and structural robustness to fabricate 2D/3D heterostructures dominated byn≥ 3 and engineer a favorable energy landscape for electron tunneling. Inverted solar cells based on 3‐Aminomethylpyridine and TFE achieve a champion efficiency of 23.60%, withVocand FF of 1.19 V and 84.5%, respectively, and superior stabilities witht94of 960 h under thermal stress.

     
    more » « less
  2. Chu, Wilson (Ed.)
    Two-dimensional materials (e.g., graphene and transition metal dichalcogenides) and their heterostructures have enormous applications in electrochemical energy storage systems such as batteries. A comprehensive and solid understanding of these materials’ thermal transport and mechanism is essential for practical device design. Several advanced experimental techniques have been developed to measure the intrinsic thermal conductivity of materials. However, experiments have challenges in providing improved control and characterization of complex structures, especially for low-dimensional materials. Theoretical and simulation tools, such as first-principles calculations, Boltzmann transport equations, molecular dynamics simulations, lattice dynamics simulation, and nonequilibrium Green’s function, provide reliable predictions of thermal conductivity and physical insights to understand the underlying thermal transport mechanism in materials. However, doing these calculations requires high computational resources. The development of new materials synthesis technology and fast-growing demand for rapid and accurate prediction of physical properties requires novel computational approaches. The machine learning method provides a promising solution to address such needs. This review details the recent development in atomistic/molecular studies and machine learning of thermal transport in two-dimensional materials. The paper also addresses the latest significant experimental advances. However, designing the best two-dimensional materials-based heterostructures is like a multivariate optimization problem. For example, a particular heterostructure may be suitable for thermal transport but can have lower mechanical strength/stability. For bilayer and multilayer structures, the interlayer distance may influence the thermal transport properties and interlayer strength. Therefore, the last part of this review addresses the future research direction in two-dimensional materials-based heterostructure design for thermal transport in energy storage systems. 
    more » « less
  3. Abstract

    2D atomic sheets of transition metal dichalcogenides (TMDs) have a tremendous potential for next‐generation optoelectronics since they can be stacked layer‐by‐layer to form van der Waals (vdW) heterostructures. This allows not only bypassing difficulties in heteroepitaxy of lattice‐mismatched semiconductors of desired functionalities but also providing a scheme to design new optoelectronics that can surpass the fundamental limitations on their conventional semiconductor counterparts. Herein, a novel 2D h‐BN/p‐MoTe2/graphene/n‐SnS2/h‐BN p–g–n junction, fabricated by a layer‐by‐layer dry transfer, demonstrates high‐sensitivity, broadband photodetection at room temperature. The combination of the MoTe2and SnS2of complementary bandgaps, and the graphene interlayer provides a unique vdW heterostructure with a vertical built‐in electric field for high‐efficiency broadband light absorption, exciton dissociation, and carrier transfer. The graphene interlayer plays a critical role in enhancing sensitivity and broadening the spectral range. An optimized device containing 5−7‐layer graphene has been achieved and shows an extraordinary responsivity exceeding 2600 A W−1with fast photoresponse and specific detectivity up to ≈1013Jones in the ultraviolet–visible–near‐infrared spectrum. This result suggests that the vdW p–g–n junctions containing multiple photoactive TMDs can provide a viable approach toward future ultrahigh‐sensitivity and broadband photonic detectors.

     
    more » « less
  4. Van der Waals heterojunctions of two-dimensional transition-metal dichalcogenides are intensely investigated for multiple optoelectronics applications. Strong and adjustable interactions between layers can influence the charge and energy flow that govern material performance. We report ab initio quantum molecular dynamics investigation of the influence of the bilayer twist angle on charge transfer and recombination in MoS 2 /WS 2 heterojunctions, including high-symmetry 0° and 60° configurations, and low symmetry 9.43° and 50.57° structures with Moiré patterns. The twist angle modulates interlayer coupling, as evidenced by changes in the interlayer distance, electron-vibrational interactions, and spectral shifts in the out-of-plane vibrational frequencies. Occurring on a femtosecond timescale, the hole transfer depends weakly on the twist angle and is ultrafast due to high density of acceptor states and large nonadiabatic coupling. In contrast, the electron–hole recombination takes nanoseconds and varies by an order of magnitude depending on the twist angle. The recombination is slow because it occurs across a large energy gap. It depends on the twist angle because the nonadiabatic coupling is sensitive to the interlayer distance and overlap of electron and hole wavefunctions. The Moiré pattern systems exhibit weaker interlayer interaction, generating longer-lived charges. Both charge separation and recombination are driven by out-of-plane vibrational motions. The simulations rationalize the experimental results on the influence of the bilayer twist angle on the charge separation and recombination. The atomistic insights provide theoretical guidance for design of high-performance optoelectronic devices based on 2D van der Waals heterostructures. 
    more » « less
  5. Abstract

    Control of excitons in transition metal dichalcogenides (TMDCs) and their heterostructures is fundamentally interesting for tailoring light-matter interactions and exploring their potential applications in high-efficiency optoelectronic and nonlinear photonic devices. While both intra- and interlayer excitons in TMDCs have been heavily studied, their behavior in the quantum tunneling regime, in which the TMDC or its heterostructure is optically excited and concurrently serves as a tunnel junction barrier, remains unexplored. Here, using the degree of freedom of a metallic probe in an atomic force microscope, we investigated both intralayer and interlayer excitons dynamics in TMDC heterobilayers via locally controlled junction current in a finely tuned sub-nanometer tip-sample cavity. Our tip-enhanced photoluminescence measurements reveal a significantly different exciton-quantum plasmon coupling for intralayer and interlayer excitons due to different orientation of the dipoles of the respectivee-hpairs. Using a steady-state rate equation fit, we extracted field gradients, radiative and nonradiative relaxation rates for excitons in the quantum tunneling regime with and without junction current. Our results show that tip-induced radiative (nonradiative) relaxation of intralayer (interlayer) excitons becomes dominant in the quantum tunneling regime due to the Purcell effect. These findings have important implications for near-field probing of excitonic materials in the strong-coupling regime.

     
    more » « less