skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solvent‐Mediated Formation of Quasi‐2D Dion‐Jacobson Phases on 3D Perovskites for Inverted Solar Cells Over 23% Efficiency
Abstract 2D‐on‐3D (2D/3D) perovskite heterostructures present a promising strategy to realize efficient and stable photovoltaics. However, their applicability in inverted solar cells is limited due to the quantum confinement of the 2D‐layer and solvent incompatibilities that disrupt the underlying 3D layer, hampering electron transport at the 2D/3D interface. Herein, solvent‐dependent formation dynamics and structural evolution of 2D/3D heterostructures are investigated via in situ X‐ray scattering. It is revealed that solvent interaction with the 3D surface determines the formation sequence and spatial distribution of quasi‐2D phases withn= 2–4. Isopropanol (IPA) reconstructs the perovskite into a PbI2‐rich surface, forming a strata with smallernfirst, followed by a thinner substratum of largern. In contrast, 2,2,2‐Trifluoroethanol (TFE) preserves the 3D surface, promoting the formation of uniformly distributed largerndomains first, and smallernlast. Leveraging these insights, Dion–Jacobson perovskites are used with superior charge transport properties and structural robustness to fabricate 2D/3D heterostructures dominated byn≥ 3 and engineer a favorable energy landscape for electron tunneling. Inverted solar cells based on 3‐Aminomethylpyridine and TFE achieve a champion efficiency of 23.60%, withVocand FF of 1.19 V and 84.5%, respectively, and superior stabilities witht94of 960 h under thermal stress.  more » « less
Award ID(s):
2054942 2114350 1719875
PAR ID:
10477317
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
45
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4′,4″,4″′‐(pyrazine‐2,3,5,6‐tetrayl) tetrakis (N,N‐bis(4‐methoxyphenyl) aniline) (PT‐TPA) which can effectively p‐dope the surface of FAxMA1−xPbI3(FA: HC(NH2)2; MA: CH3NH3) perovskite films is reported. The intermolecular charge transfer property of PT‐TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT‐TPA. After applying PT‐TPA into perovskite solar cells, the doping‐induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques. 
    more » « less
  2. Abstract Two key interfaces in flexible perovskite solar cells (f‐PSCs) are mechanically reinforced simultaneously: one between the electron‐transport layer (ETL) and the 3D metal‐halide perovskite (MHP) thin film using self‐assembled monolayer (SAM), and the other between the 3D‐MHP thin film and the hole‐transport layer (HTL) using an in situ grown low‐dimensional (LD) MHP capping layer. The interfacial mechanical properties are measured and modeled. This rational interface engineering results in the enhancement of not only the mechanical properties of both interfaces but also their optoelectronic properties holistically. As a result, the new class of dual‐interface‐reinforced f‐PSCs has an unprecedented combination of the following three important performance parameters: high power‐conversion efficiency (PCE) of 21.03% (with reduced hysteresis), improved operational stability of 1000 hT90(duration at 90% initial PCE retained), and enhanced mechanical reliability of 10 000 cyclesn88(number of bending cycles at 88% initial PCE retained). The scientific underpinnings of these synergistic enhancements are elucidated. 
    more » « less
  3. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering. 
    more » « less
  4. Although C60is usually the electron transport layer (ETL) in inverted perovskite solar cells, its molecular nature of C60leads to weak interfaces that lead to non-ideal interfacial electronic and mechanical degradation. Here, we synthesized an ionic salt from C60, 4-(1',5′-dihydro-1'-methyl-2'H-[5,6] fullereno-C60-Ih-[1,9-c]pyrrol-2'-yl) phenylmethanaminium chloride (CPMAC), and used it as the electron shuttle in inverted PSCs. The CH2-NH3+head group in the CPMA cation improved the ETL interface and the ionic nature enhanced the packing, leading to ~3-fold increase in the interfacial toughness compared to C60. Using CPMAC, we obtained ~26% power conversion efficiencies (PCEs) with ~2% degradation after 2,100 hours of 1-sun operation at 65°C. For minimodules (four subcells, 6 centimeters square), we achieved the PCE of ~23% with <9% degradation after 2,200 hours of operation at 55°C. 
    more » « less
  5. Abstract Perovskite solar cells in which 2D perovskites are incorporated within a 3D perovskite network exhibit improved stability with respect to purely 3D systems, but lower record power conversion efficiencies (PCEs). Here, a breakthrough is reported in achieving enhanced PCEs, increased stability, and suppressed photocurrent hysteresis by incorporating n‐type, low‐optical‐gap conjugated organic molecules into 2D:3D mixed perovskite composites. The resulting ternary perovskite–organic composites display extended absorption in the near‐infrared region, improved film morphology, enlarged crystallinity, balanced charge transport, efficient photoinduced charge transfer, and suppressed counter‐ion movement. As a result, the ternary perovskite–organic solar cells exhibit PCEs over 23%, which are among the best PCEs for perovskite solar cells with p–i–n device structure. Moreover, the ternary perovskite–organic solar cells possess dramatically enhanced stability and diminished photocurrent hysteresis. All these results demonstrate that the strategy of exploiting ternary perovskite–organic composite thin films provides a facile way to realize high‐performance perovskite solar cells. 
    more » « less