Background The increasing volume of health-related social media activity, where users connect, collaborate, and engage, has increased the significance of analyzing how people use health-related social media. Objective The aim of this study was to classify the content (eg, posts that share experiences and seek support) of users who write health-related social media posts and study the effect of user demographics on post content. Methods We analyzed two different types of health-related social media: (1) health-related online forums—WebMD and DailyStrength—and (2) general online social networks—Twitter and Google+. We identified several categories of post content and built classifiers to automatically detect these categories. These classifiers were used to study the distribution of categories for various demographic groups. Results We achieved an accuracy of at least 84% and a balanced accuracy of at least 0.81 for half of the post content categories in our experiments. In addition, 70.04% (4741/6769) of posts by male WebMD users asked for advice, and male users’ WebMD posts were more likely to ask for medical advice than female users’ posts. The majority of posts on DailyStrength shared experiences, regardless of the gender, age group, or location of their authors. Furthermore, health-related posts on Twitter and Google+ were used to share experiences less frequently than posts on WebMD and DailyStrength. Conclusions We studied and analyzed the content of health-related social media posts. Our results can guide health advocates and researchers to better target patient populations based on the application type. Given a research question or an outreach goal, our results can be used to choose the best online forums to answer the question or disseminate a message.
more »
« less
Hypergraph Text Classification for Mental Health Misleading Advice
This paper introduces HyperMAD, a novel Hypergraph Convolutional Network model designed for the multiclass classification of mental health advice in Arabic tweets. The model distinguishes between misleading and valid advice, further categorizing each tweet into specific classes of advice. HyperMAD leverages high-order relations between words in short texts, captured through the definition of four types of hyperedges that represent local and global contexts as well as semantic similarity. Extensive experiments demonstrate the effectiveness of HyperMAD, with results outperforming those from existing baselines. The study also includes an ablation study to investigate the significance and contribution of each hyperedge type. The paper presents a case study analyzing the accuracy and types of Arabic mental health advice on Twitter, revealing that about 9% of the advice in response to mental health expressions on Twitter was accurate in general. The paper concludes with the hope that the application of HyperMAD can be utilized in flagging misleading responses on social media, providing the correct resources for those who choose to share their mental health struggles online.
more »
« less
- Award ID(s):
- 2141095
- PAR ID:
- 10487946
- Publisher / Repository:
- IEEE/ACM
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
More than Just a Diagnosis: A Multi-Task Approach to Analyzing Bipolar Disorder on Reddit via DeMHeMThis paper introduces DeMHeM, a novel multitask framework designed for the descriptive classification of bipolar and related mental health topics on online platforms like Reddit. The model distinguishes between different mental health categories and also models the correlation among them by categorizing each post into potentially multiple mental health categories. DeMHeM leverages both the shared latent and task-specific semantic feature space by integrating sentence-level and topic-level embeddings. It further incorporates Focal Loss for joint learning, inter-task parameter sharing, and regularization decay to optimize the prediction for the naturally skewed imbalanced dataset. Through extensive experiments and a comprehensive ablation study, we demonstrate the effectiveness of our model, with results outperforming existing baselines. Furthermore, a case study is conducted to analyze the entirety of the "r/bipolar" subreddit to understand the specific nuances in the discussion of bipolar disorder by applying our model to data collected from January 2020 to December 2021 and extracting the top keywords of each predicted category. Our analysis shows that DeMHeM can be used to understand the multi-faceted discussion of mental health topics for a given community.more » « less
-
Abstract Research shows that certain external factors can affect the mental health of many people in a community. Moreover, the importance of mental health has significantly increased in recent years due to the COVID-19 pandemic. Many people communicate and express their emotions through social media platforms, which provide researchers with opportunities to examine insights into their opinions and mental state. While social sensing studies using social media data have flourished in the last decade, many studies using social media data to detect and predict mental health status have focused on the individual level. In this study, we aim to generate a social sensing index for mental health to monitor emotional well-being, which is closely related to mental health, and to identify daily trends in negative emotions at the city level. We conduct sentiment analysis on Twitter data and compute entropy of the degree of sentiment change to develop the index. We observe sentiment trends fluctuate significantly in response to unusual events. It is found that the social sensing index for mental health reflects both city-wide and local events that trigger negative emotions, as well as areas where negative emotions persist. The study contributes to the growing body of research that uses social media data to examine mental health at a city-level. We focus on mental health at the city-level rather than individual, which provides a broader perspective on the mental health of a population. Social sensing index for mental health allows public health professionals to monitor and identify persistent negative sentiments and potential areas where mental health issues may emerge.more » « less
-
Abstract Misinformation about the COVID-19 pandemic proliferated widely on social media platforms during the course of the health crisis. Experts have speculated that consuming misinformation online can potentially worsen the mental health of individuals, by causing heightened anxiety, stress, and even suicidal ideation. The present study aims to quantify the causal relationship between sharing misinformation, a strong indicator of consuming misinformation, and experiencing exacerbated anxiety. We conduct a large-scale observational study spanning over 80 million Twitter posts made by 76,985 Twitter users during an 18.5 month period. The results from this study demonstrate that users who shared COVID-19 misinformation experienced approximately two times additional increase in anxiety when compared to similar users who did not share misinformation. Socio-demographic analysis reveals that women, racial minorities, and individuals with lower levels of education in the United States experienced a disproportionately higher increase in anxiety when compared to the other users. These findings shed light on the mental health costs of consuming online misinformation. The work bears practical implications for social media platforms in curbing the adverse psychological impacts of misinformation, while also upholding the ethos of an online public sphere.more » « less
-
Many patients with mental disorders take dietary supplement, but their use patterns remain unclear. In this study, we developed a method to detect signals of associations between dietary supplement intake and mental disorder in Twitter data. We developed an annotated dataset and trained a convolutional neural network classifier that can identify language use pattern of dietary supplement intake with an F1-score of 0.899, a precision of 0.900, and a recall of 0.900. Using the classifier, we discovered that melatonin and vitamin D were the most commonly used supplements among Twitter users who self-diagnosed mental disorders. Sentiment analysis using Linguistic Inquiry and Word Count has shown that among Twitter users who posted mental disorder self-diagnosis, users who indicated supplement intake are more active and express more negative emotions and fewer positive emotions than those who have not mentioned supplement intake.more » « less
An official website of the United States government
