skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stable expression of large transgenes via the knock-in of an integrase-deficient lentivirus
The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.  more » « less
Award ID(s):
2046650
PAR ID:
10487971
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Biomedical Engineering
Date Published:
Journal Name:
Nature Biomedical Engineering
Volume:
7
Issue:
5
ISSN:
2157-846X
Page Range / eLocation ID:
661 to 671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CRISPR gene editing offers unprecedented genomic and transcriptomic control for precise regulation of cell function and phenotype. However, delivering the necessary CRISPR components to therapeutically relevant cell types without cytotoxicity or unexpected side effects remains challenging. The RALA cell penetrating peptide is an amphiphilic peptide that self‐assembles into nanoparticles through electrostatic interactions with anionic molecules and delivers them across the cell membrane. Given the low cytotoxicity, versatility, and competitive transfection rates of RALA, we aimed to establish this peptide as a new CRISPR delivery system in a wide range of molecular formats across different editing modalities. We report that RALA effectively encapsulated and delivered CRISPR DNAs, RNAs, and ribonucleic proteins (RNPs) to primary mesenchymal stem cells (MSCs), outperforming commercially available reagents. We then used the RALA peptide for the knock‐in and knock‐out of reporter genes into primary MSCs and the transcriptional activation of therapeutically relevant genes. Finally, we demonstrate in vivo gene editing using RALA to knock‐out luciferase and GFP in a reporter mouse model. In summary, we establish RALA as a powerful tool for safer and more effective delivery of CRISPR machinery in multiple cargo formats for a wide range of ex vivo and in vivo gene editing strategies. 
    more » « less
  2. Abstract DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures, where long single-stranded DNA is folded into a compact nanostructure, present an attractive approach to package genes; however, effective delivery of genetic material into cell nuclei has remained a critical challenge. Here, we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR–Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore, our study validates virus-like particles as an efficient method of DNA nanostructure delivery, opening the possibility of delivering nanostructures in vivo to specific cell types. Together, these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates, exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions, such as biosensing, into cell nuclei. 
    more » « less
  3. null (Ed.)
    Perkinsus marinus (Perkinsozoa), a close relative of apicomplexans, is an osmotrophic facultative intracellular marine protozoan parasite responsible for “Dermo” disease in oysters and clams. Although there is no clinical evidence of this parasite infecting humans, HLA-DR4 0 transgenic mice studies strongly suggest the parasite as a natural adjuvant in oral vaccines. P. marinus is being developed as a heterologous gene expression platform for pathogens of medical and veterinary relevance and a novel platform for delivering vaccines. We previously reported the transient expression of two rodent malaria genes Plasmodium berghei HAP2 and MSP8 . In this study, we optimized the original electroporation-based protocol to establish a stable heterologous expression method. Using 20 μg of p PmMOE[MOE1]:GFP and 25.0 × 10 6 P. marinus cells resulted in 98% GFP-positive cells. Furthermore, using the optimized protocol, we report for the first time the successful knock-in of GFP at the C-terminus of the PmMOE1 using ribonucleoprotein (RNP)-based CRISPR/Cas9 gene editing methodology. The GFP was expressed 18 h post-transfection, and expression was observed for 8 months post-transfection, making it a robust and stable knock-in system. 
    more » « less
  4. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less
  5. Abstract Discovery of off-target CRISPR–Cas activity in patient-derived cells and animal models is crucial for genome editing applications, but currently exhibits low sensitivity. We demonstrate that inhibition of DNA-dependent protein kinase catalytic subunit accumulates the repair protein MRE11 at CRISPR–Cas-targeted sites, enabling high-sensitivity mapping of off-target sites to positions of MRE11 binding using chromatin immunoprecipitation followed by sequencing. This technique, termed DISCOVER-Seq+, discovered up to fivefold more CRISPR off-target sites in immortalized cell lines, primary human cells and mice compared with previous methods. We demonstrate applicability to ex vivo knock-in of a cancer-directed transgenic T cell receptor in primary human T cells and in vivo adenovirus knock-out of cardiovascular risk genePCSK9in mice. Thus, DISCOVER-Seq+ is, to our knowledge, the most sensitive method to-date for discovering off-target genome editing in vivo. 
    more » « less