skip to main content


Title: Scaled Population Division for Approximate Computing
In this paper we present an approximate division scheme for Scaled Population (SP) arithmetic, a technique that improves on the limitations of stochastic computing (SC). SP arithmetic circuits are designed (a) to perform all operations with a constant delay, and (b) they use scaling operations to help reduce errors compared to SC circuits. As part of this work, we also present a method to correlate two SP numbers with a constant delay. We compare our SP divider with SC dividers, as well as fixed-point dividers (in terms of area, power and delay). Our 512-bit SP divider has a delay (power) that is 0.08× (0.06×) that of the equivalent fixed-point binary divider. Compared to a equivalent SC divider, our power-delay-product is 13× better. Index Terms—Approximate Arithmetic, Stochastic Computing, Computer Arithmetic, Approximate Division, Fast Division  more » « less
Award ID(s):
1937396
NSF-PAR ID:
10488000
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings International Symposium on Low Power Electronics and Design
Edition / Version:
1
ISSN:
1533-4678
ISBN:
979-8-3503-1175-4
Page Range / eLocation ID:
1 to 6
Subject(s) / Keyword(s):
Index Terms—Approximate Arithmetic, Stochastic Computing, Computer Arithmetic, Approximate Division, Fast Division
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. IEEE (Ed.)
    In this paper we present an approximate division scheme for Scaled Population (SP) arithmetic, a technique that improves on the limitations of stochastic computing (SC). SP arithmetic circuits are designed (a) to perform all operations with a constant delay, and (b) they use scaling operations to help reduce errors compared to SC circuits. As part of this work, we also present a method to correlate two SP numbers with a constant delay. We compare our SP divider with SC dividers, as well as fixed-point dividers (in terms of area, power and delay). Our 512-bit SP divider has a delay (power) that is 0.08× (0.06×) that of the equivalent fixed-point binary divider. Compared to a equivalent SC divider, our power-delay-product is 13× better. Index Terms—Approximate Arithmetic, Stochastic Computing, Computer Arithmetic, Approximate Division, Fast Division 
    more » « less
  2. null (Ed.)
    In this paper we present Scaled Population Subtraction to fill a void in Scaled Population arithmetic. Scaled population (SP) arithmetic is a scheme that is inspired by stochastic computing (SC), a non-conventional approximate computing method that is well known for its simplicity, area efficiency and resilience to bit errors. SP arithmetic reduces the numerical errors compared to SC and also solves the serialization limitation of SC, since it is designed to have a O(1) gate delay. Previously, SP was limited to only addition and multiplication and did not have a way to perform subtraction. This paper introduces the basic SP subtraction idea, followed by a detailed study of several ways that the basic design can be improved to reduce the computational error. Our best SP design significantly improves the error compared to our basic SP subtraction idea (reducing it by 32.3%). We also study the trade-off between design complexity of the SP subtractor against output error. Also, our implementation of the SP subtractor exhibits an improved delay, power and area compared to fixed point realizations with the same size. 
    more » « less
  3. We propose a new Scaled Population (SP) based arithmetic computation approach that achieves considerable improvements over existing stochastic computing (SC) techniques. First, SP arithmetic introduces scaling operations that significantly reduce the numerical errors as compared to SC. Experiments show accuracy improvements of a single multiplication and addition operation by 6.3X and 4X, respectively. Secondly, SP arithmetic erases the inherent serialization associated with stochastic computing, thereby significantly improves the computational delays. We design each of the operations of SP arithmetic to take O(1) gate delays, and eliminate the need of serially iterating over the bits of the population vector. Our SP approach improves the area, delay and power compared with conventional stochastic computing on an FPGA-based implementation. We also apply our SP scheme on a handwritten digit recognition application (MNIST), improving the recognition accuracy by 32.79% compared to SC. 
    more » « less
  4. Stochastic computing (SC) division circuits have gained importance in recent years compared to other arithmetic circuits due to their low complexity as a result of an accuracy tradeoff. Designing a division circuit is already complex in conventional binary-based hardware systems. Developing an accurate and efficient SC division circuit is an open research problem. Prior work proposed different SC division circuits by using multiplexers and JK-flip-flop units, which may require correlated or uncorrelated input bit-streams. This study is primarily centered on exploring a cost-effective and highly efficient bit-stream generator specifically designed for SC division circuits. In conjunction with this objective, we assess the performance of multiple bit-stream generators and analyze the impact of correlation on SC division. We compare different designs in terms of accuracy and hardware cost. Moreover, we discuss a low-cost and energy-efficient bit-stream generator via powers-of-2 Van der Corput (VDC) sequences. Among the tested sequence generators, our best results were achieved with VDC sequences. Our evaluation results demonstrate that the novel VDC-based design yields promising outputs, resulting in a 15.5% reduction in the area-delay product and an 18.05% saving in energy consumption for the same accuracy level compared to conventional bit-stream generators. Significantly, our investigation reveals that employing the proposed generator improves the precision compared to the state-of-the-art. We validate the proposed architecture with an image processing case study, achieving high PSNR and structural similarity values. 
    more » « less
  5. Stochastic computing (SC) is a re-emerging computing paradigm providing low-cost and noise-tolerant designs for a wide range of arithmetic operations. SC circuits operate on uniform bit-streams with the value determined by the probability of observing 1’s in the bit-stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. While some operations such as minimum and maximum value functions require highly correlated inputs, some other such as multiplication operation need uncorrelated or independent inputs for accurate computation. Developing low-cost and accurate correlation manipulation circuits is an important research in SC as these circuits can manage correlation between bit-streams without expensive bit-stream regeneration. This work proposes a novel in-stream correlator and decorrelator circuit that manages 1) correlation between stochastic bit-streams, and 2) distribution of 1’s in the output bit-streams. Compared to state-of-the-art solutions, our designs achieve lower hardware cost and higher accuracy. The output bit-streams enjoy a low-discrepancy distribution of bits which leads to higher quality of results. The effectiveness of the proposed circuits is shown with two case studies: SC design of sorting and median filtering 
    more » « less