skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Debias random forest regression predictors
The random forest can reduce the variance of regression predictors through bagging while leaving the bias mostly unchanged. In general, the bias is not negligible and consequently bias correction is necessary. The default bias correction method implemented in the R package randomForest often works poorly. Several approaches have been developed which in general outperform the R default. However, little work has been done to com- prehensively evaluate the performance of these methods and thus guide users to select an appropriate method for bias correction. This paper fills this gap by providing an informa- tive ranking of these bias correction methods based on an extensive numerical study. We further offered practical suggestions on the application of the winner of these methods and suggested a visualization technique to help users decide when bias correction is needed. Journal of Statistical Research 2022, Vol. 56, No. 2, pp. 115-131  more » « less
Award ID(s):
1950370
PAR ID:
10488064
Author(s) / Creator(s):
; ;
Publisher / Repository:
ResearchGate
Date Published:
Journal Name:
Journal of Statistical Research
Volume:
56
Issue:
2
ISSN:
0256-422X
Page Range / eLocation ID:
115 to 131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Click data collected by modern recommendation systems are an important source of observational data that can be utilized to train learning-to-rank (LTR) systems. However, these data suffer from a number of biases that can result in poor performance for LTR systems. Recent methods for bias correction in such systems mostly focus on position bias, the fact that higher ranked results (e.g., top search engine results) are more likely to be clicked even if they are not the most relevant results given a user’s query. Less attention has been paid to correcting for selection bias, which occurs because clicked documents are reflective of what documents have been shown to the user in the first place. Here, we propose new counterfactual approaches which adapt Heckman's two-stage method and accounts for selection and position bias in LTR systems. Our empirical evaluation shows that our proposed methods are much more robust to noise and have better accuracy compared to existing unbiased LTR algorithms, especially when there is moderate to no position bias. 
    more » « less
  2. null (Ed.)
    In situ sensors for environmental chemistry promise more thorough observations, which are necessary for high confidence predictions in earth systems science. However, these can be a challenge to interpret because the sensors are strongly influenced by temperature, humidity, pressure, or other secondary environmental conditions that are not of direct interest. We present a comparison of two statistical learning methods—a generalized additive model and a long short-term memory neural network model for bias correction of in situ sensor data. We discuss their performance and tradeoffs when the two bias correction methods are applied to data from submersible and shipboard mass spectrometers. Both instruments measure the most abundant gases dissolved in water and can be used to reconstruct biochemical metabolisms, including those that regulate atmospheric carbon dioxide. Both models demonstrate a high degree of skill at correcting for instrument bias using correlated environmental measurements; the difference in their respective performance is less than 1% in terms of root mean squared error. Overall, the long short-term memory bias correction produced an error of 5% for O 2 and 8.5% for CO 2 when compared against independent membrane DO and laser spectrometer instruments. This represents a predictive accuracy of 92–95% for both gases. It is apparent that the most important factor in a skillful bias correction is the measurement of the secondary environmental conditions that are likely to correlate with the instrument bias. These statistical learning methods are extremely flexible and permit the inclusion of nearly an infinite number of correlates in finding the best bias correction solution. 
    more » « less
  3. Abstract We develop alternative families of Bayes factors for use in hypothesis tests as alternatives to the popular default Bayes factors. The alternative Bayes factors are derived for the statistical analyses most commonly used in psychological research – one-sample and two-samplet tests, regression, and ANOVA analyses. They possess the same desirable theoretical and practical properties as the default Bayes factors and satisfy additional theoretical desiderata while mitigating against two features of the default priors that we consider implausible. They can be conveniently computed via an R package that we provide. Furthermore, hypothesis tests based on Bayes factors and those based on significance tests are juxtaposed. This discussion leads to the insight that default Bayes factors as well as the alternative Bayes factors are equivalent to test-statistic-based Bayes factors as proposed by Johnson.Journal of the Royal Statistical Society Series B: Statistical Methodology,67, 689–701. (2005). We highlight test-statistic-based Bayes factors as a general approach to Bayes-factor computation that is applicable to many hypothesis-testing problems for which an effect-size measure has been proposed and for which test power can be computed. 
    more » « less
  4. Climate change is increasingly impacting water availability. National-scale hydrologic models simulate streamflow resulting from many important processes, but often without processes such as human water use and management activities. This work explores and tests methods to account for such omitted processes using one national-scale hydrologic model. Two bias correction methods, Flow Duration Curve (FDC) and Auto-Regressive Integrated Moving Average (ARIMA), are tested on streamflow simulated by the US Geological Survey National Hydrologic Model (NHM-PRMS), which omits irrigation pumping. A semi-arid agricultural case study is used. FDC and ARIMA perform better for correcting low and high flows, respectively. A hybrid method performs well at both low and high flows; typical Nash-Sutcliffe values increased from <-1.00 to about 0.75. Results suggest methods with which national-scale hydrologic models can be bias-corrected for omitted processes to improve regional streamflow estimates. Utility of these correction methods in simulation of future projections is discussed. 
    more » « less
  5. In this study, we evaluate the implications of a bias correction method on a combination of Global/Regional Climate Models (GCM and RCM) for simulating precipitation and, subsequently, streamflow, surface runoff, and water yield in the Soil and Water Assessment Tool (SWAT). The study area is the Des Moines River Basin, U.S.A. The climate projections are two RCMs driven by two GCMs for historical simulations (1981–2005) and future projections (2030–2050). Bias correction improves historical precipitation for annual volumes, seasonality, spatial distribution, and mean error. Simulated monthly historical streamflow was compared across 26 monitoring stations with mostly satisfactory results for percent bias (Pbias). There were no changes in annual trends for future scenarios except for raw WRF models. Seasonal variability remained the same; however, most models predicted an increase in monthly precipitation from January to March and a reduction for June and July. Meanwhile, the bias-corrected models showed changes in prediction signals. In some cases, raw models projected an increase in surface runoff and water yield, but the bias-corrected models projected a reduction in these variables. This suggests the bias correction may be larger than the climate-change signal and indicates the procedure is not a small correction but a major factor. 
    more » « less