skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solubilization of elemental sulfur by surfactants promotes reduction to H 2 S by thiols
Surfactants solubilize S8 in water and promote thiol-mediated reduction to form H2S. Anionic and cationic surfactants have different impacts on the resultant reactive sulfur species distribution.  more » « less
Award ID(s):
2004150
PAR ID:
10488102
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Communications
Volume:
59
Issue:
44
ISSN:
1359-7345
Page Range / eLocation ID:
6702 to 6705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract H2S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P‐SSH). One family of proteins modified by H2S are zinc finger (ZF) proteins, which contain multiple zinc‐coordinating cysteine residues. Herein, we report the reactivity of H2S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2S was observed by low‐temperature ESI‐MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2S to form superoxide, as detected by ESI‐MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA. 
    more » « less
  2. Abstract All‐solid‐state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost‐effectiveness. Developing potassium solid electrolytes (SEs) with high room‐temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room‐temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non‐oxide potassium SEs. Solid‐state39K magic‐angle‐spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47reveals an increased population of mobile K+ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+density and significantly enhanced K+diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47as a promising SE for all‐solid‐state potassium batteries. 
    more » « less
  3. Synchrotron X-ray total scattering and pair distribution function analysis are used to investigate the structural changes during solution synthesis of the Li7P3S11solid electrolyte. 
    more » « less
  4. Abstract In this report, a facile wet chemical method using acetonitrile combined with thermal annealing was used to prepare Li2S‐P2S5(LPS) based glass‐ceramic electrolytes with (1 wt%, 3 wt%, and 5 wt% Ce2S3) and without Ce2S3doping. The crystal structure, ionic conductivity, and chemical stability of Li7P3S11glass‐ceramic electrolytes were examined at varying temperatures (250–350°C). The results indicated that the highest ionic conductivity of 3.15 × 10−4S cm−1for pure Li7P3S11was observed at a temperature of 325°C. By incorporating 1 wt% Ce2S3and subjecting it to a heat treatment at 250°C, the glass ceramic electrolyte attained a remarkable ionic conductivity of 7.7 × 10−4(S cm−1) at 25°C. Furthermore, it exhibited a stable and extensive electrochemical potential range, reaching up to 5 volts when compared to the Li/Li+reference electrode. By tuning the glass transition and crystallization temperature, cerium doping seems to make Li7P3S11more chemically stable, compared to its original 70Li2S‐30P2S5counterpart. According to Raman and X‐ray photoelectron spectroscopy analyses, cerium doping inhibits the decomposition of highly conductive P2S74‐(pyro‐thiophosphate) to PS43−and P2S64−. Doped LPS has a greater crystallinity and more uniform microstructure than pure LPS, according to XRD, Raman spectroscopy, and scanning electron microscopy analysis. Consequently, Li7P2.9Ce0.1S11electrolyte shows great potential as a solid‐state electrolyte for constructing high‐performance sulfide‐based all‐solid‐state batteries. 
    more » « less
  5. Li3.6In7S11.8Cl has a face-centered cubic arrangement of S2−/Clstabilized by Li+/In3+that form 3D ion conduction paths. The moisture stability and fast ion conduction make Li3.6In7S11.8Cl a promising electrolyte for solid-state batteries. 
    more » « less