The microbiota plays important roles in host metabolism and immunity, and its disruption affects adult brain physiology and behavior. Although such findings have been attributed to altered neurodevelopment, few studies have actually examined microbiota effects on the developing brain. This review focuses on developmental effects of the earliest exposure to microbes. At birth, the mammalian fetus enters a world teeming with microbes which colonize all body sites in contact with the environment. Bacteria reach the gut within a few hours of birth and cause a measurable response in the intestinal epithelium. In adults, the gut microbiota signals to the brain via the vagus nerve, bacterial metabolites, hormones, and immune signaling, and work in perinatal rodents is beginning to elucidate which of these signaling pathways herald the very first encounter with gut microbes in the neonate. Neural effects of the microbiota during the first few days of life include changes in neuronal cell death, microglia, and brain cytokine levels. In addition to these effects of direct exposure of the newborn to microbes, accumulating evidence points to a role for the maternal microbiota in affecting brain development via bacterial molecules and metabolites while the offspring is still in utero . Hence, perturbations to microbial exposure perinatally, such as through C-section delivery or antibiotic treatment, alter microbiota colonization and may have long-term neural consequences. The perinatal period is critical for brain development and a close look at microbiota effects during this time promises to reveal the earliest, most primary effects of the microbiota on neurodevelopment. 
                        more » 
                        « less   
                    
                            
                            Brain effects of gestating germ-free persist in mouse neonates despite acquisition of a microbiota at birth
                        
                    
    
            At birth, mammals experience a massive colonization by microorganisms. We previously reported that newborn mice gestated and born germ-free (GF) have increased microglial labeling and alterations in developmental neuronal cell death in the hippocampus and hypothalamus, as well as greater forebrain volume and body weight when compared to conventionally colonized (CC) mice. To test whether these effects are solely due to differences in postnatal microbial exposure, or instead may be programmedin utero, we cross-fostered GF newborns immediately after birth to CC dams (GF→CC) and compared them to offspring fostered within the same microbiota status (CC→CC, GF→GF). Because key developmental events (including microglial colonization and neuronal cell death) shape the brain during the first postnatal week, we collected brains on postnatal day (P) 7. To track gut bacterial colonization, colonic content was also collected and subjected to 16S rRNA qPCR and Illumina sequencing. In the brains of GF→GF mice, we replicated most of the effects seen previously in GF mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for almost all measures. In contrast, total bacterial load did not differ between the CC→CC and GF→CC groups on P7, and bacterial community composition was also very similar, with a few exceptions. Thus, GF→CC offspring had altered brain development during at least the first 7 days after birth despite a largely normal microbiota. This suggests that prenatal influences of gestating in an altered microbial environment programs neonatal brain development. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1933264
- PAR ID:
- 10488135
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Neuroscience
- Volume:
- 17
- ISSN:
- 1662-453X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Birth is an inflammatory event for the newborn, characterized by elevations in interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α peripherally and/or centrally, as well as changes in brain microglia. However, the mechanism(s) underlying these responses is unknown. Toll-like receptors (TLRs) play crucial roles in innate immunity and initiate inflammatory cascades upon recognition of endogenous or exogenous antigens. Most TLR signaling depends on the adaptor molecule myeloid differentiation primary response 88 (MyD88). We independently varied MyD88 gene status in mouse dams and their offspring to determine whether the inflammatory response to birth depends on MyD88 signaling and, if so, whether that signaling occurs in the offspring, the mother, or both. We find that the perinatal surges in plasma IL-6 and brain expression of TNF-α depend solely on MyD88 gene status of the offspring, whereas postnatal increases in plasma IL-10 and TNF-α depend on MyD88 in both the pup and dam. Interestingly, MyD88 genotype of the dam primarily drives differences in offspring brain microglial density and has robust effects on developmental neuronal cell death. Milk cytokines were evaluated as a possible source of postnatal maternal influence; although we found high levels of CXCL1/GROα and several other cytokines in ingested post-partum milk, their presence did not require MyD88. Thus, the inflammatory response previously described in the late-term fetus and newborn depends on MyD88 (and, by extension, TLRs), with signaling in both the dam and offspring contributing. Unexpectedly, naturally-occuring neuronal cell death in the newborn is modulated primarily by maternal MyD88 gene status.more » « less
- 
            Abstract Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner.more » « less
- 
            Insufficient thyroid hormone (TH) during development results in permanent neurological deficits. These deficits are the result of neuroanatomical defects that include smaller brain, fewer parvalbumin neurons, and hypomyelination. Interestingly, insufficient insulin-like growth factor 1 (Igf-1) during development results in similar neuroanatomical defects to those reported for developmental hypothyroidism. Thyroid hormone is known to indirectly influence serum Igf-1 levels through its regulation of pituitary growth hormone (GH) secretion which stimulates hepatic Igf-1 production. Our lab and others have observed decreases of local brain-derived Igf-1 in the developing hypothyroid mouse brain. This observation suggests that deficits associated with low TH during development may be the result of altered brain-derived Igf-1. Considering this, we sought to determine whether ectopically expressing Igf-1 in the developing brain could rescue neuroanatomical defects associated with TH. To accomplish this, the tet-off transgenic system was used where mice harboring tetracycline transactivator protein driven by the human GFAP promoter (tTA-GFAP) were crossed with mice containing the human Igf-1cDNA under the control the TET response element (Igf1-pTRE) transgene. Double transgenic (dTg) offspring carrying both the tTA-GFAP and Igf1-TRE genes overexpress Igf-1 specifically in brain astrocytes. The timed-pregnant mice were treated with thyroid gland inhibitors from embryonic day 14.5 (E14.5) until postnatal day 14 (P14) to induce a hypothyroid state in pups. At P14, pups were weighed and sacrificed, trunk blood was collected, and brains were dissected, weighed, and immediately frozen. Hippocampal structure, known be disrupted by developmental hypothyroidism, was assessed by fluorescent imaging using DAPI staining. Our initial results indicate that ectopic expression of Igf-1 in the brain (dTg mice) rescues hypothyroidism-induced reductions in brain weight without increasing body weight. In addition, the ectopic expression of Igf-1 restored hypothyroidism-induced perturbations in dentate gyrus size. Ongoing studies are using quantitative real-time PCR on micro-dissected cortical and hippocampal samples, to quantify myelin associated glycoprotein and parvalbumin mRNAs. Taken together, our findings support the idea that ectopic brain-derived Igf-1 rescues neuroanatomical defects caused by hypothyroidism and implicates TH in the regulation of brain Igf-1.more » « less
- 
            Abstract Potassium (K+) channels are robustly expressed during prenatal brain development, including in progenitor cells and migrating neurons, but their function is poorly understood. Here, we investigate the role of voltage-gated K+channel KCNB1 (Kv2.1) in neocortical development. Neuronal migration of glutamatergic neurons was impaired in the neocortices of KCNB1 null mice. Migratory defects persisted into the adult brains, along with disrupted morphology and synaptic connectivity. Mice developed seizure phenotype, anxiety, and compulsive behavior. To determine whether defective KCNB1 can give rise to developmental channelopathy, we constructed Knock In (KI) mice, harboring the gene variantKcnb1R312H(R312H mice) found in children with developmental and epileptic encephalopathies (DEEs). The R312H mice exhibited a similar phenotype to the null mice. Wild type (WT) and R312H KCNB1 channels made complexes with integrins α5β5 (Integrin_K+channel_Complexes, IKCs), whose biochemical signaling was impaired in R312H brains. Treatment with Angiotensin II in vitro, an agonist of Focal Adhesion kinase, a key component of IKC signaling machinery, corrected the neuronal abnormalities. Thus, a genetic mutation in a K+channel induces severe neuromorphological abnormalities through non-conducting mechanisms, that can be rescued by pharmacological intervention. This underscores a previously unknown role of IKCs as key players in neuronal development, and implicate developmental channelopathies in the etiology of DEEs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    