skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Introduction to The Symposium: “The Role of Mechanosensation in Robust Locomotion”
Synopsis Mechanosensory information is a critical component of organismal movement control systems. Understanding the role mechanosensation plays in modulating organismal behavior requires inherently multidisciplinary research programs that reach across biological scales. Recently, there have been rapid advances in discerning how mechanosensory mechanisms are integrated into neural control systems and the impact mechanosensory information has on behavior. Thus, the Symposium “The Role of Mechanosensation in Robust Locomotion” at the 2023 Annual Meeting of the Society for Integrative and Comparative Biology was convened to discuss these recent advances, compare and contrast different systems, share experimental advice, and inspire collaborative approaches to expand and synthesize knowledge. The diverse set of speakers presented on a variety of vertebrate, invertebrate, and robotic systems. Discussion at the symposium resulted in a series of manuscripts presented in this issue that address issues facing the broader field, mechanisms of mechanosensation, organismal function and biomechanics, and sensing in ecological and social contexts.  more » « less
Award ID(s):
2233350
PAR ID:
10488158
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
63
Issue:
2
ISSN:
1540-7063
Page Range / eLocation ID:
444 to 449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation—the sensing of mechanical forces generated within and outside the body—as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together. 
    more » « less
  2. Synopsis Throughout their lives, organisms must integrate and maintain stability across complex developmental, morphological, and physiological systems, all while responding to changing internal and external environments. Determining the mechanisms underlying organismal responses to environmental change and development is a major challenge for biology. This is particularly important in the face of the rapidly changing global climate, increasing human populations, and habitat destruction. In January 2024, we organized a symposium to highlight some current efforts to use modeling to understand organismal responses to short- and long-term changes in their internal and external environments. Our goal was to facilitate collaboration and communication between modelers and organismal biologists, which is one of the major aims of the Organismal Systems-type Modeling Research Coordination Network, OSyM. Accompanying this introduction are a series of papers that are aimed to enhance research and education in linking organismal biology and modeling and contribute to building a new community of scientists to tackle important questions using this approach. 
    more » « less
  3. Motor systems in animals are highly dependent on sensory information for optimal control and precision, with mechanosensory feedback from the somatosensory system playing a critical role. These mechanosensory pathways are woven into the descending feedforward pathways and local central pattern generator circuits that control and generate movement, respectively. Somatosensory feedback in mammals and insects, the two animal classes this review touches upon, is complex due to the increased demands that limbed locomotion, weight-bearing, and corrective movements place on sensorimotor control. In this review, we outline the salient features of the proprioceptive and exteroceptive sensory feedback pathways animals rely on for controlling movement and highlight some of the key principles of sensory feedback that are shared across the animal kingdom. 
    more » « less
  4. Synopsis Crossing traditional disciplinary boundaries can accelerate advances in scientific knowledge, often to the great service of society. However, integrative work entails certain challenges, including the tendency for individual specialization and the difficulty of communication across fields. Tools like the AskNature database and an engineering-to-biology thesaurus partially reduce the barrier to information flow between biology and engineering. These tools would be complemented by a big-picture framework to help researchers and designers conceptually approach conversations with colleagues across disciplines. Here, I synthesize existing ideas to propose a conceptual framework organized around function. The basic framework highlights the contributions of sub-organismal traits (e.g., morphology, physiology, biochemistry, material properties), behavior, and the environment to functional outcomes. I also present several modifications of the framework that researchers and designers can use to make connections to higher levels of biological organization and to understand the influence neural control, development/ontogeny, evolution, and trade-offs in biological systems. The framework can be used within organismal biology to unite subfields, and also to aid the leap from organismal biology to bioinspired design. It provides a means for mapping the often-complex pathways among organismal and environmental characteristics, ultimately guiding us to a deeper understanding of organismal function. 
    more » « less
  5. Abstract Once considered mere structural support cells in the nervous system, glia have recently been demonstrated to play pivotal roles in sensorimotor processing and to directly respond to sensory stimuli. However, their response properties and contributions to sensory-induced behaviors remain little understood. InCaenorhabditis elegans, the amphid sheath glia (AMsh) directly respond to aversive odorants and mechanical stimuli, but their precise transduction machinery and their behavioral relevance remain unclear. We investigated the role of AMsh in mechanosensation and their impact on escape behaviors inC. elegans. We found that nose touch stimuli in immobilized animals induced a slow calcium wave in AMsh, which coincided with the termination of escape reversal behaviors. Genetic ablation of AMsh resulted in prolonged reversal durations in response to nose touch, but not to harsh anterior touch, highlighting the specificity of AMsh’s role in distinct escape behaviors. Mechanotransduction in AMsh requires the α-tubulin MEC-12 and the ion channels ITR-1 and OSM-9, indicating a unique mechanosensory pathway that is distinct from the neighboring ASH neurons. We find that GABAergic signaling mediated by the GABA-A receptor orthologs LGC-37/8 and UNC-49 play a crucial role in modulating the duration of nose touch-induced reversals. We conclude that in addition to aversive odorant detection, AMsh mediate mechanosensation, play a pivotal role in terminating escape responses to nose touch, and provide a mechanism to maintain high sensitivity to polymodal sensory stimuli. SignificancePolymodal nociceptive sensory neurons have the challenge of multitasking across sensory modalities. They must respond to dangerous stimuli of one modality, but also adapt to repeated nonthreatening stimuli without compromising sensitivity to harmful stimuli from different modalities. Here we show that a pair of glia in the nematodeC. elegansmodulate the duration of nose-touch induced escape responses. We identify several molecules involved in the transduction of mechanical stimuli in these cells and show that they use the signaling molecule GABA to modulate neural function. We propose a mechanism through which these glia might function to maintain this polysensory neuron responsive to dangerous stimuli across different modalities. 
    more » « less