skip to main content


Title: Radiative and Microphysical Impacts of the Saharan Dust on Two Concurrent Tropical Cyclones: Danielle and Earl (2010)
Abstract

Saharan dust exerts profound impacts on the genesis and intensification of tropical cyclones (TCs). Such impacts on various stages of the TCs have yet to be explored. In this study, we utilize the Cloud‐Resolving weather research and forecasting model (WRF) to investigate the relative importance of the microphysical and radiative effects of dust on two hurricanes (Earl and Danielle) at different life stages under similar dynamical conditions in 2010. Both TCs were embedded in a dusty environment throughout their lifetime. A new dust ice nucleation scheme was implemented into the aerosol‐aware Texas A&M University two‐moment microphysical scheme in WRF. Moreover, the dust radiative effect was included in the Goddard Shortwave Scheme of WRF. Our sensitivity experiments show that the radiative effect of dust (DRAD) amplified the mid‐level ridge in the Central Atlantic Ocean through temperature perturbation, changing the tracks of Danielle and Earl. Further analyses reveal an early shift of Danielle's maximum intensity for 12 hours but a significantly suppressed Earl in DRAD. In addition, the microphysical effect of dust had little impact on the large‐scale dynamical fields and storm tracks. The inclusion of dust as ice nucleation particles results in more variations in the intensity of Danielle and Earl than in other scenarios. This is owing to the higher maximum diabatic heating rate in the rainband region that perturbs the size of the TC. This study shows the dominant dust radiative effects on both intensity and track of the storm. In addition, there is evidence that dust suppresses the early stage TC but provides favorable conditions for matured TC. Both findings have profound implications for hurricane forecast and address the importance of accounting for detailed cloud microphysics and aerosol‐TC interactions in the operational forecasting models.

 
more » « less
Award ID(s):
2103714
PAR ID:
10488270
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
2
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Intense tropical cyclones (TCs) can cause catastrophic damage to coastal regions after landfall. Recent studies have linked the devastation associated with TCs to climate change, which induces favorable conditions, such as increasing sea-surface temperature, to supercharge storms. Meanwhile, environmental factors, such as atmospheric aerosols, also impact the development and intensity of TCs, but their effects remain poorly understood, particularly coupled with ocean dynamics. Here, we quantitatively assess the aerosol microphysical effects and aerosol-modified ocean feedbacks during Hurricane Katrina using a cloud-resolving atmosphere–ocean coupled model: Weather Research and Forecasting (WRF) in conjunction with the Regional Ocean Model System (ROMS). Our model simulations reveal that an enhanced storm destructive power, as reflected by larger integrated kinetic energy, heavier precipitation, and higher sea-level rise, is linked to the combined effects of aerosols and ocean feedbacks. These effects further result in an expansion of the storm circulation with a reduced intensity because of a decreasing moist static energy supply and enhancing vorticity Rossby wave outward propagation. Both accumulated precipitation and storm surge are enhanced during the mature stage of the TC with elevated aerosol concentrations, implying exacerbated flood damage over the polluted coastal region. The ocean feedback following the aerosol microphysical effects tends to mitigate the vertical mixing cooling in the ocean mixing layer and offsets the aerosol-induced storm weakening by enhancing cloud and precipitation near the eyewall region. Our results highlight the importance of accounting for the effects of aerosol microphysics and ocean-coupling feedbacks to improve the forecast of TC destructiveness, particularly near the heavily polluted coastal regions along the Gulf of Mexico.

     
    more » « less
  2. Abstract

    Tropical cyclone intensification processes are explored in six high-resolution climate models. The analysis framework employs process-oriented diagnostics that focus on how convection, moisture, clouds, and related processes are coupled. These diagnostics include budgets of column moist static energy and the spatial variance of column moist static energy, where the column integral is performed between fixed pressure levels. The latter allows for the quantification of the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclone spinup, including surface flux feedbacks and cloud-radiative feedbacks. Tropical cyclones (TCs) are tracked in the climate model simulations and the analysis is applied along the individual tracks and composited over many TCs. Two methods of compositing are employed: a composite over all TC snapshots in a given intensity range, and a composite over all TC snapshots at the same stage in the TC life cycle (same time relative to the time of lifetime maximum intensity for each storm). The radiative feedback contributes to TC development in all models, especially in storms of weaker intensity or earlier stages of development. Notably, the surface flux feedback is stronger in models that simulate more intense TCs. This indicates that the representation of the interaction between spatially varying surface fluxes and the developing TC is responsible for at least part of the intermodel spread in TC simulation.

     
    more » « less
  3. null (Ed.)
    Abstract. Changes in land cover and aerosols resulting from urbanization may impactconvective clouds and precipitation. Here we investigate how Houstonurbanization can modify sea-breeze-induced convective cloud and precipitation through the urban land effect and anthropogenic aerosol effect. The simulations are carried out with the Chemistry version of the WeatherResearch and Forecasting model (WRF-Chem), which is coupled with spectral-bin microphysics (SBM) and the multilayer urban model with abuilding energy model (BEM-BEP). We find that Houston urbanization (thejoint effect of both urban land and anthropogenic aerosols) notably enhancesstorm intensity (by ∼ 75 % in maximum vertical velocity) andprecipitation intensity (up to 45 %), with the anthropogenic aerosoleffect more significant than the urban land effect. Urban land effectmodifies convective evolution: speed up the transition from the warm cloudto mixed-phase cloud, thus initiating surface rain earlier but slowing down the convective cell dissipation, all of which result from urban heating-induced stronger sea-breeze circulation. The anthropogenic aerosol effectbecomes evident after the cloud evolves into the mixed-phase cloud,accelerating the development of storm from the mixed-phase cloud to deepcloud by ∼ 40 min. Through aerosol–cloud interaction (ACI), aerosols boost convective intensity and precipitation mainly by activatingnumerous ultrafine particles at the mixed-phase and deep cloud stages. Thiswork shows the importance of considering both the urban land and anthropogenic aerosol effects for understanding urbanization effects on convective cloudsand precipitation. 
    more » « less
  4. Abstract

    Ice crystal habit significantly impacts ice crystal processes such as growth by vapor deposition. Despite this, most bulk microphysical models disregard this natural shape effect and assume ice to grow spherically. This paper focuses on how the evolution of ice crystal shape and choice of ice nucleation parameterization in the adaptive habit microphysics model (AHM) influence the lake-effect storm that occurred during intensive observing period 4 (IOP4) of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. This localized snowstorm produced total accumulated liquid-equivalent precipitation amounts up to 17.92 mm during a 16-h time period, providing a natural laboratory to investigate the ice–liquid partitioning within the cloud, various microphysical process rates, the accumulated precipitation magnitude, and its associated spatial distribution. Two nucleation parameterizations were implemented, and aerosol data from a size-resolved advanced particle microphysics (APM) model were ingested into the AHM for use in parameterizing ice and cloud condensation nuclei. Simulations allowing ice crystals to grow nonspherically produced 1.6%–2.3% greater precipitation while altering the nucleation parameterization changed the type of accumulating hydrometeors. In addition, all simulations were highly sensitive to the domain resolution and the source of initial and boundary conditions. These findings form the foundational understanding of relationships among ice crystal habit, nucleation parameterizations, and resultant cold-season mesoscale precipitation within detailed bulk microphysical models allowing adaptive habit.

     
    more » « less
  5. Abstract

    Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and intensity, as these are some of the most important characteristics of TCs and are often the principal verification concerns of operational forecast centers. However, there is a growing need to verify other aspects of TCs as process-based validation techniques may be increasingly necessary for further track and intensity forecast improvements as well as improving communication of the broad impacts of TCs including inland flooding from precipitation. Here we present a set of TC-focused verification methods available via the Model Evaluation Tools (MET) ranging from traditional approaches to the application of storm-centric coordinates and the use of feature-based verification of spatially defined TC objects. Storm-relative verification using observed and forecast tracks can be useful for identifying model biases in precipitation accumulation in relation to the storm center. Using a storm-centric cylindrical coordinate system based on the radius of maximum wind adds additional storm-relative capabilities to regrid precipitation fields onto cylindrical or polar coordinates. This powerful process-based model diagnostic and verification technique provides a framework for improved understanding of feedbacks between forecast tracks, intensity, and precipitation distributions. Finally, object-based verification including land masking capabilities provides even more nuanced verification options. Precipitation objects of interest, either the central core of TCs or extended areas of rainfall after landfall, can be identified, matched to observations, and quickly aggregated to build meaningful spatial and summary verification statistics.

     
    more » « less