skip to main content


Title: Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation
Abstract. Changes in land cover and aerosols resulting from urbanization may impactconvective clouds and precipitation. Here we investigate how Houstonurbanization can modify sea-breeze-induced convective cloud and precipitation through the urban land effect and anthropogenic aerosol effect. The simulations are carried out with the Chemistry version of the WeatherResearch and Forecasting model (WRF-Chem), which is coupled with spectral-bin microphysics (SBM) and the multilayer urban model with abuilding energy model (BEM-BEP). We find that Houston urbanization (thejoint effect of both urban land and anthropogenic aerosols) notably enhancesstorm intensity (by ∼ 75 % in maximum vertical velocity) andprecipitation intensity (up to 45 %), with the anthropogenic aerosoleffect more significant than the urban land effect. Urban land effectmodifies convective evolution: speed up the transition from the warm cloudto mixed-phase cloud, thus initiating surface rain earlier but slowing down the convective cell dissipation, all of which result from urban heating-induced stronger sea-breeze circulation. The anthropogenic aerosol effectbecomes evident after the cloud evolves into the mixed-phase cloud,accelerating the development of storm from the mixed-phase cloud to deepcloud by ∼ 40 min. Through aerosol–cloud interaction (ACI), aerosols boost convective intensity and precipitation mainly by activatingnumerous ultrafine particles at the mixed-phase and deep cloud stages. Thiswork shows the importance of considering both the urban land and anthropogenic aerosol effects for understanding urbanization effects on convective cloudsand precipitation.  more » « less
Award ID(s):
1837811
NSF-PAR ID:
10203969
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
20
Issue:
22
ISSN:
1680-7324
Page Range / eLocation ID:
14163 to 14182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The known effects of thermodynamics and aerosols can well explain the thunderstorm activity over land, but fail over oceans. Here, tracking the full lifecycle of tropical deep convective cloud clusters shows that adding fine aerosols significantly increases the lightning density for a given rainfall amount over both ocean and land. In contrast, adding coarse sea salt (dry radius > 1 μm), known as sea spray, weakens the cloud vigor and lightning by producing fewer but larger cloud drops, which accelerate warm rain at the expense of mixed-phase precipitation. Adding coarse sea spray can reduce the lightning by 90% regardless of fine aerosol loading. These findings reconcile long outstanding questions about the differences between continental and marine thunderstorms, and help to understand lightning and underlying aerosol-cloud-precipitation interaction mechanisms and their climatic effects.

     
    more » « less
  2. Abstract

    Aerosol‐cloud‐precipitation interactions represent one of the most significant uncertainties in climate simulation and projection. In particular, the impact of aerosols on precipitation is highly uncertain due to limited and conflicting observational evidence. A major challenge is to distinguish the effects of different types of aerosols on precipitation associated with deep convective clouds, which produces most of the precipitation in East Asia. Here, we use 9‐yr observations from multiple satellite‐borne sensors and find that the occurrent frequency of heavy rain increases while that of light rain decreases with the increase of aerosol optical depth (AOD) for dust and polluted continental aerosol types. For average hourly precipitation amount, elevated smoke tends to suppress deep convective precipitation, while dust and polluted continental aerosols enhance precipitation mainly through the invigoration of deep convection. The invigoration effect is more significant for clouds with higher cloud base temperature (CBT), while no significant invigoration is observed when CBT is <12°C. A great contrast is found for the response of average hourly precipitation amount to aerosols over ocean and land. While the prevailing continental aerosol types other than smoke increase precipitation, the marine aerosols first enhance and then inhibit precipitation with the increase of AOD. Moreover, our analysis indicates that the above‐mentioned enhancement and inhibition effects on precipitation are mainly caused by aerosols themselves, rather than by the covariation of meteorological factors. These observed relationships between different aerosol types and precipitation frequency and amount provide valuable constraints on the model forecasting of precipitation.

     
    more » « less
  3. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

     
    more » « less
  4. Abstract. Aerosol–cloud interactions remain largely uncertain with respect to predicting theirimpacts on weather and climate. Cloud microphysics parameterization is oneof the factors leading to large uncertainty. Here, we investigate the impactsof anthropogenic aerosols on the convective intensity and precipitation of athunderstorm occurring on 19 June 2013 over Houston with the Chemistryversion of Weather Research and Forecast model (WRF-Chem) using the Morrisontwo-moment bulk scheme and spectral bin microphysics (SBM) scheme. We findthat the SBM predicts a deep convective cloud that shows better agreement withobservations in terms of reflectivity and precipitation compared with theMorrison bulk scheme that has been used in many weather and climate models.With the SBM scheme, we see a significant invigoration effect on convectiveintensity and precipitation by anthropogenic aerosols, mainly throughenhanced condensation latent heating. Such an effect is absent withthe Morrison two-moment bulk microphysics, mainly because the saturationadjustment approach for droplet condensation and evaporation calculationlimits the enhancement by aerosols in (1) condensation latent heat byremoving the dependence of condensation on droplets and aerosols and (2) ice-related processes because the approach leads to stronger warm rain andweaker ice processes than the explicit supersaturation approach. 
    more » « less
  5. Abstract

    Atmospheric CO2 and anthropogenic aerosols (AA) have increased simultaneously. Because of their opposite radiative effects, these increases may offset each other, which may lead to some nonlinear effects. Here the seasonal and regional characteristics of this nonlinear effect from the CO2 and AA forcings are investigated using the fully coupled Community Earth System Model. Results show that nonlinear effects are small in the global mean of the top-of-the-atmosphere radiative fluxes, surface air temperature, and precipitation. However, significant nonlinear effects exist over the Arctic and other extratropical regions during certain seasons. When both forcings are included, Arctic sea ice in September–November decreases less than the linear combination of the responses to the individual forcings due to a higher sea ice sensitivity to the CO2-induced warming than the sensitivity to the AA-induced cooling. This leads to less Arctic warming in the combined-forcing experiment due to reduced energy release from the Arctic Ocean to the atmosphere. Some nonlinear effects on precipitation in June–August are found over East Asia, with the northward-shifted East Asian summer rain belt to oppose the CO2 effect. In December–February, the aerosol loading over Europe in the combined-forcing experiment is higher than that due to the AA forcing, resulting from CO2-induced circulation changes. The changed aerosol loading results in regional thermal responses due to aerosol direct and indirect effects, weakening the combined changes of temperature and circulation. This study highlights the need to consider nonlinear effects from historical CO2 and AA forcings in seasonal and regional climate attribution analyses.

     
    more » « less