This paper proposes and develops a new analytic bearingless machine model that incorporates multiple airgap harmonic field interactions and has several advantages. The model can be used to address levitation performance requirements by developing force/torque regulation methods to precisely calculate commands to current regulators. This allows relaxing constraints during the design stage and has the potential to enable consideration of higher performance bearingless machines. Furthermore, analogous to torque enhancement in conventional electric machines, the proposed model can be used to identify options for suspension force enhancement in bearingless motors by controlling multiple magnetic field harmonics. This paper provides a detailed derivation of the model and shows how it can be used to improve force regulation accuracy and enhance force capacity. The paper finds that by controlling four airgap harmonic fields, instead of the typical two harmonics, force capacity can be increased by approximately 40%. Hardware measurements using a 10-phase bearingless induction machine validate the proposed model and force capacity increase.
more »
« less
Analysis of Force Capacity in Magnetic Bearings and Bearingless Motors from the Perspective of Airgap Space Harmonic Fields
This paper studies the force creation capabilities of active magnetic bearings (AMBs) and bearingless motors from the perspective of multiple airgap space harmonics/pole-pairs. This approach is analytic-based and is useful in explaining the underlying physics of the machine and conducting force capacity analysis for different numbers of phases/poles. The presented per unit (p.u.) model makes the force capacity results applicable to any motor dimensions and peak airgap field value. An explanation of the force capacity in bearingless motors is provided when only two harmonics are controlled (which is the typical approach in bearingless motor literature) and the relationship between torque, force, and magnetizing field values is identified. Using this relationship, optimal magnetizing field values for maximum torque-force capability are identified, which is useful to consider when designing a bearingless motor. This paper extends the force capacity analysis to bearingless motors with multiple (more than two) controllable space harmonics and proposes that force enhancement can be achieved through the control of the magnitudes and angles of these harmonics. Results show that potential force enhancement of over 40% in bearingless machines can be achieved when controlling four airgap harmonics as opposed to two harmonics. These results suggest that being able to control multiple harmonics can yield high performance designs.
more »
« less
- Award ID(s):
- 1942099
- PAR ID:
- 10488285
- Publisher / Repository:
- magneticbearings.org
- Date Published:
- Journal Name:
- 18th International Symposium on Magnetic Bearings
- Subject(s) / Keyword(s):
- Active magnetic bearing, bearingless motor, self-bearing motor, current sequences, force enhancement
- Format(s):
- Medium: X
- Location:
- Lyon, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A multi-phase (MP) combined winding design procedure for bearingless machines is proposed and developed. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and another for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements for the MP combined winding. A sequence of winding design steps is proposed and used to design example MP combined windings.more » « less
-
A generalized multi-phase (MP) combined winding design procedure for bearingless machines is proposed and devel- oped. Using this procedure, new bearingless motor windings can be designed and conventional motor designs with MP windings can be transformed into bearingless motors by simply modifying the phase currents. The resulting MP winding is excited by two current components – one responsible for torque creation and an- other for suspension force creation. By applying the appropriate Clarke transformation, independent control of force and torque can be achieved. Although there are numerous papers in the literature studying bearingless machines with MP windings and their advantages, this is the first paper to provide a formal design procedure that can be applied to any MP winding configuration. The proposed approach can be used to realize popular winding designs, including concentrated- and fractional-slot windings, and is applicable to all radial-flux bearingless machines. The paper uses the Maxwell stress tensor to formulate the force/torque model for the MP combined winding and uses the results to derive design requirements. A sequence of winding design steps is proposed and used to design example MP combined windings. Experimental validation is provided using a six-phase bearingless induction machine prototype.more » « less
-
This paper proposes and develops a new and exact analytic electric machine model that has several potential advantages. The model can be used to address levitation performance requirements by developing exact force/torque regulation methods to precisely calculate commands to current regulators. This allows relaxing constraints during the design stage and has the potential to enable consideration of higher performance bearingless machines. Furthermore, analogous to torque enhancement in conventional electric machines, the proposed model can be used to identify options for suspension force enhancement by controlling multiple magnetic field harmonics. This paper provides a detailed derivation of the model and shows how it can be used to improve force regulation accuracy and enhance force density.more » « less
-
The robotic spine has a lot of potential for snake-like, quadruped, and humanoid robots, as it can improve their mobility, flexibility, and overall function. A common approach to developing an articulated spine uses geared motors to imitate vertebrae. Instead of using geared motors that rotate 360 degree, a bioinspired gearless electromechanical actuator was proposed and developed as an alternative, specifically for humanoid spine applications. The actuator trades off angular flexibility for torque, while the geared motor trades off speed for torque. This article compares the proposed actuator and conventional geared motors regarding torque, acceleration, and copper loss for a vertebra's angular flexibility. When its angular flexibility is lower than 14∘, the proposed actuator achieves higher torque capability without gears than with conventional motors. Lower angular flexibility, which means smaller airgaps, allows the proposed actuator to produce a much stronger torque for the same input power. The actuator's nonlinear electrical and mechanical dynamics models are developed and used for position control of a six-module distributed spine. In addition, two different position-control architectures are developed: an outer loop proportional-integral (PI) position controller with an inner loop PI current controller and an outer loop PI position controller with an inner loop PI torque controller.more » « less
An official website of the United States government

