skip to main content


This content will become publicly available on January 11, 2025

Title: Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism
ABSTRACT

Type VI secretion system (T6SS) is a versatile, contact-dependent contractile nano-weapon in Gram-negative bacteria that fires proteinaceous effector molecules directly into prokaryotic and eukaryotic cells aiding in manipulation of the host and killing of competitors in complex niches. In plant pathogenic xanthomonads, T6SS has been demonstrated to play these diverse roles in individual pathosystems. However, the molecular network underlying the regulation of T6SS is still elusive inXanthomonasspp. To bridge this knowledge gap, we conducted anin vitrotranscriptome screen using plant apoplast mimicking minimal medium, XVM2 medium, to decipher the effect oftssMdeletion, a core gene belonging to T6SS-cluster i3*, on the regulation of gene expression inXanthomonas perforansstrain AL65. Transcriptomic data revealed that a total of 277 and 525 genes were upregulated, while 307 and 392 genes were downregulated in the mutant strain after 8 and 16 hours of growth in XVM2 medium. The transcript abundance of several genes associated with flagellum and pilus biogenesis as well as type III secretion system was downregulated in the mutant strain. Deletion oftssMof cluster-i3* resulted in upregulation of several T6SS genes belonging to cluster-i3*** and genes involved in biofilm and cell wall biogenesis. Similarly, transcription regulators likerpoN, Pho regulon,rpoE, andcsrAwere identified to be upregulated in the mutant strain. Our results suggest that T6SS modulates the expression of global regulators likecsrA,rpoN, andphoregulons, triggering a signaling cascade, and co-ordinates the expression of suite of virulence factors, stress response genes, and metabolic genes.

IMPORTANCE

T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here,Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* inX. perforansAL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.

 
more » « less
Award ID(s):
1942956
NSF-PAR ID:
10488369
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Burbank, Lindsey Price
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
12
Issue:
1
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Xanthomonas perforans is a seed-borne hemi-biotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While the majority of the studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth as well as shorter latent infection period compared to the wild-type upon dip-inoculation of 4-5-week-old tomato plants. Contribution of tssM towards aggressiveness was evident during vertical transmission from seed-to-seedling with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared to the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemi-biotrophic pathogen with the host, minimizing overall disease severity, yet facilitating successful dissemination. 
    more » « less
  2. Xanthomonas euvesicatoria pv. rosa strain Xer07 causes a leaf spot on a Rosa sp. and is closely related to X. euvesicatoria pv. euvesicatoria (Xee) and X. perforans (Xp), causal agents of bacterial spot of tomato. However, Xer07 is not pathogenic on tomato and elicits a hypersensitive reaction (HR). We compared the genomes of the three bacterial species to identify the factors that limit Xer07 on tomato. Comparison of pathogenicity associated factors including the type III secretion systems identified two genes, xopA and xer3856, in Xer07 that have lower sequence homology in tomato pathogens. xer3856 is a homolog of genes in X. citri (xac3856) and X. fuscans pv. aurantifolii, both of which have been reported to elicit HRs in tomato. When xer3856 was expressed in X. perforans and infiltrated in tomato leaflets, the transconjugant elicited an HR and significantly reduced bacterial populations compared to the wildtype X. perforans strain. When xer3856 was mutated in Xer07, the mutant strain still triggered an HR in tomato leaflets. The second gene identified codes for type III secreted effector XopA, which contains a harpin domain that is distinct from the xopA homologs in Xee and Xp. The Xer07-xopA, when expressed in X. perforans, did not elicit an HR in tomato leaflets, but significantly reduced bacterial populations. This indicates that xopA and xer3856 genes in combination with an additional factor(s) limit Xer07 in tomato. 
    more » « less
  3. Summary

    GacS/GacA is a conserved two‐component system that functions as a master regulator of virulence‐associated traits in many bacterial pathogens, includingPseudomonasspp., that collectively infect both plant and animal hosts. Among many GacS/GacA‐regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogenPseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)‐encoding genes. However, in the plant pathogenic bacteriumPseudomonas syringae, strain‐to‐strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re‐evaluated the function of GacA inP. syringaepv.tomatoDC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence insideArabidopsisleaf tissue. However, our results show that GacA is required for full virulence of leaf surface‐inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulatingP. syringaevirulence.

     
    more » « less
  4. O'Toole, George (Ed.)
    ABSTRACT Myxococcus xanthus copes with starvation by producing fruiting bodies filled with dormant and stress-resistant spores. Here, we aimed to better define the gene regulatory network associated with Nla28, a transcriptional activator/enhancer binding protein (EBP) and a key regulator of the early starvation response. Previous work showed that Nla28 directly regulates EBP genes that are important for fruiting body development. However, the Nla28 regulatory network is likely to be much larger because hundreds of starvation-induced genes are downregulated in a nla28 mutant strain. To identify candidates for direct Nla28-mediated transcription, we analyzed the downregulated genes using a bioinformatics approach. Nine potential Nla28 target promoters (29 genes) were discovered. The results of in vitro promoter binding assays, coupled with in vitro and in vivo mutational analyses, suggested that the nine promoters along with three previously identified EBP gene promoters were indeed in vivo targets of Nla28. These results also suggested that Nla28 used tandem, imperfect repeats of an 8-bp sequence for promoter binding. Interestingly, eight of the new Nla28 target promoters were predicted to be intragenic. Based on mutational analyses, the newly identified Nla28 target loci contained at least one gene that was important for starvation-induced development. Most of these loci contained genes predicted to be involved in metabolic or defense-related functions. Using the consensus Nla28 binding sequence, bioinformatics, and expression profiling, 58 additional promoters and 102 genes were tagged as potential Nla28 targets. Among these putative Nla28 targets, functions, such as regulatory, metabolic, and cell envelope biogenesis, were assigned to many genes. IMPORTANCE In bacteria, starvation leads to profound changes in behavior and physiology. Some of these changes have economic and health implications because the starvation response has been linked to the formation of biofilms, virulence, and antibiotic resistance. To better understand how starvation contributes to changes in bacterial physiology and resistance, we identified the putative starvation-induced gene regulatory network associated with Nla28, a transcriptional activator from the bacterium Myxoccocus xanthus . We determined the mechanism by which starvation-responsive genes were activated by Nla28 and showed that several of the genes were important for the formation of a highly resistant cell type. 
    more » « less
  5. Champion, Patricia A. (Ed.)
    ABSTRACT The molecular machine necessary for protein synthesis, the ribosome, is generally considered constitutively functioning and lacking any inherent regulatory capacity. Yet ribosomes are commonly heterogeneous in composition and the impact of ribosome heterogeneity on translation is not well understood. Here, we determined that changes in ribosome protein composition govern gene expression in the intracellular bacterial pathogen Francisella tularensis . F. tularensis encodes three distinct homologs for bS21, a ribosomal protein involved in translation initiation, and analysis of purified F. tularensis ribosomes revealed they are heterogeneous with respect to bS21. The loss of one homolog, bS21-2, resulted in significant changes to the cellular proteome unlinked to changes in the transcriptome. Among the reduced proteins were components of the type VI secretion system (T6SS), an essential virulence factor encoded by the Francisella Pathogenicity Island. Furthermore, loss of bS21-2 led to an intramacrophage growth defect. Although multiple bS21 homologs complemented the loss of bS21-2 with respect to T6SS protein abundance, bS21-2 was uniquely necessary for robust intramacrophage growth, suggesting bS21-2 modulates additional virulence gene(s) distinct from the T6SS. Our results indicate that ribosome composition in F. tularensis , either directly or indirectly, posttranscriptionally modulates gene expression and virulence. Our findings are consistent with a model in which bS21 homologs function as posttranscriptional regulators, allowing preferential translation of specific subsets of mRNAs, likely at the stage of translation initiation. This work also raises the possibility that bS21 in other organisms may function similarly and that ribosome heterogeneity may permit many bacteria to posttranscriptionally regulate gene expression. IMPORTANCE While bacterial ribosomes are commonly heterogeneous in composition (e.g., incorporating different homologs for a ribosomal protein), how heterogeneity impacts translation is unclear. We found that the intracellular human pathogen Francisella tularensis has heterogeneous ribosomes, incorporating one of three homologs for ribosomal protein bS21. Furthermore, one bS21 homolog posttranscriptionally governs the expression of the F. tularensis type VI secretion system, an essential virulence factor. This bS21 homolog is also uniquely important for robust intracellular growth. Our data support a model in which bS21 heterogeneity leads to modulation of translation, providing another source of posttranscriptional gene regulation. Regulation of translation by bS21, or other sources of ribosomal heterogeneity, may be a conserved mechanism to control gene expression across the bacterial phylogeny. 
    more » « less