skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A mutation of a single core gene, tssM , of Type VI secretion system of Xanthomonas perforans influences virulence, epiphytic survival and transmission during pathogenesis on tomato
Xanthomonas perforans is a seed-borne hemi-biotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While the majority of the studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth as well as shorter latent infection period compared to the wild-type upon dip-inoculation of 4-5-week-old tomato plants. Contribution of tssM towards aggressiveness was evident during vertical transmission from seed-to-seedling with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared to the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemi-biotrophic pathogen with the host, minimizing overall disease severity, yet facilitating successful dissemination.  more » « less
Award ID(s):
1942956
PAR ID:
10311978
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Phytopathology®
ISSN:
0031-949X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Burbank, Lindsey Price (Ed.)
    ABSTRACT Type VI secretion system (T6SS) is a versatile, contact-dependent contractile nano-weapon in Gram-negative bacteria that fires proteinaceous effector molecules directly into prokaryotic and eukaryotic cells aiding in manipulation of the host and killing of competitors in complex niches. In plant pathogenic xanthomonads, T6SS has been demonstrated to play these diverse roles in individual pathosystems. However, the molecular network underlying the regulation of T6SS is still elusive inXanthomonasspp. To bridge this knowledge gap, we conducted anin vitrotranscriptome screen using plant apoplast mimicking minimal medium, XVM2 medium, to decipher the effect oftssMdeletion, a core gene belonging to T6SS-cluster i3*, on the regulation of gene expression inXanthomonas perforansstrain AL65. Transcriptomic data revealed that a total of 277 and 525 genes were upregulated, while 307 and 392 genes were downregulated in the mutant strain after 8 and 16 hours of growth in XVM2 medium. The transcript abundance of several genes associated with flagellum and pilus biogenesis as well as type III secretion system was downregulated in the mutant strain. Deletion oftssMof cluster-i3* resulted in upregulation of several T6SS genes belonging to cluster-i3*** and genes involved in biofilm and cell wall biogenesis. Similarly, transcription regulators likerpoN, Pho regulon,rpoE, andcsrAwere identified to be upregulated in the mutant strain. Our results suggest that T6SS modulates the expression of global regulators likecsrA,rpoN, andphoregulons, triggering a signaling cascade, and co-ordinates the expression of suite of virulence factors, stress response genes, and metabolic genes. IMPORTANCET6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here,Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* inX. perforansAL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria. 
    more » « less
  2. The emergence of plant pathogens is often associated with waves of unique evolutionary and epidemiological events. Xanthomonas hortorum pv. gardneri is one of the major pathogens causing bacterial spot disease of tomatoes. After its first report in the 1950s, there were no formal reports on this pathogen until the 1990s, despite active global research on the pathogens that cause tomato and pepper bacterial spot disease. Given the recently documented global distribution of X. hortorum pv. gardneri, our objective was to examine genomic diversification associated with its emergence. We sequenced the genomes of X. hortorum pv. gardneri strains collected in eight countries to examine global population structure and pathways of emergence using phylodynamic analysis. We found that strains isolated post-1990 group by region of collection and show minimal impact of recombination on genetic variation. A period of rapid geographic expansion in X. hortorum pv. gardneri is associated with acquisition of a large plasmid conferring copper tolerance by horizontal transfer and coincides with the burgeoning hybrid tomato seed industry through the 1980s. The ancestry of X. hortorum pv. gardneri is consistent with introduction to hybrid tomato seed production and dissemination during the rapid increase in trade of hybrid seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  3. Contaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified Salmonella enterica factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that S. enterica can benefit from the conditions generated during plant disease by host-compatible plant pathogens. In this study, we compared the capacity of two common S. enterica research strains, 14028s and LT2 (strain DM10000) to opportunistically colonize the leaf apoplast of two model plant hosts Arabidopsis thaliana and Nicotiana benthamiana during disease. While S. enterica 14028s benefited from co-colonization with plant-pathogenic Pseudomonas syringae in both plant hosts, S. enterica LT2 was unable to benefit from Pto co-colonization in N. benthamiana . Counterintuitively, LT2 grew more rapidly in ex planta N. benthamiana apoplastic wash fluid with a distinctly pronounced biphasic growth curve in comparison with 14028s. Using allelic exchange, we demonstrated that both the N. benthamiana infection-depedent colonization and apoplastic wash fluid growth phenotypes of LT2 were associated with mutations in the S. enterica rpoS stress-response sigma factor gene. Mutations of S. enterica rpoS have been previously shown to decrease tolerance to oxidative stress and alter metabolic regulation. We identified rpoS- dependent alterations in the utilization of L-malic acid, an abundant carbon source in N. benthamiana apoplastic wash fluid. We also present data consistent with higher relative basal reactive oxygen species (ROS) in N. benthamiana leaves than in A. thaliana leaves. The differences in basal ROS may explain the host-dependent disease co-colonization defect of the rpoS -mutated LT2 strain. Our results indicate that the conducive environment generated by pathogen modulation of the apoplast niche can vary from hosts to host even with a common disease-compatible pathogen. 
    more » « less
  4. Abstract The hormones salicylic acid (SA) and jasmonic acid (JA) often act antagonistically in controlling plant defense pathways in response to hemibiotrophs/biotrophs (hemi/biotroph) and herbivores/necrotrophs, respectively. Threonine deaminase (TD) converts threonine to α-ketobutyrate and ammonia as the committed step in isoleucine (Ile) biosynthesis and contributes to JA responses by producing the Ile needed to make the bioactive JA–Ile conjugate. Tomato (Solanum lycopersicum) plants have two TD genes: TD1 and TD2. A defensive role for TD2 against herbivores has been characterized in relation to JA–Ile production. However, it remains unknown whether TD2 is also involved in host defense against bacterial hemi/biotrophic and necrotrophic pathogens. Here, we show that in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin flg22 peptide, an activator of SA-based defense responses, TD2 activity is compromised, possibly through carboxy-terminal cleavage. TD2 knockdown (KD) plants showed increased resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae but were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, suggesting TD2 plays opposite roles in response to hemibiotrophic and necrotrophic pathogens. This TD2 KD plant differential response to different pathogens is consistent with SA- and JA-regulated defense gene expression. flg22-treated TD2 KD plants showed high expression levels of SA-responsive genes, whereas TD2 KD plants treated with the fungal PAMP chitin showed low expression levels of JA-responsive genes. This study indicates TD2 acts negatively in defense against hemibiotrophs and positively against necrotrophs and provides insight into a new TD2 function in the elaborate crosstalk between SA and JA signaling induced by pathogen infection. 
    more » « less
  5. Abstract AimsThe American leaf spot, caused by Mycena citricolor, is an important disease of coffee (Coffea arabica), mostly in Central America. Currently, there are limited pathogen control alternatives that are environment friendly and economically accessible. The use of fungi isolated from the plant endomycobiota in their native habitats is on the rise because studies show their great potential for biological control. To begin to generate a green alternative to control M. citricolor, the objectives of the present study were to (i) collect, identify, screen (in vitro and in planta), and select endophytic fungi from wild Rubiaceae collected in old-growth forests of Costa Rica; (ii) confirm endophytic colonization in coffee plantlets; (iii) evaluate the effects of the endophytes on plantlet development; and (iv) corroborate the antagonistic ability in planta. Methods and resultsThrough in vitro and in planta antagonism assays, we found that out of the selected isolates (i.e. Daldinia eschscholzii GU11N, Nectria pseudotrichia GUHN1, Purpureocillium aff. lilacinum CT24, Sarocladium aff. kiliense CT25, Trichoderma rifaii CT5, T. aff. crassum G1C, T. aff. atroviride G7T, T. aff. strigosellum GU12, and Xylaria multiplex GU14T), Trichoderma spp. produced the highest growth inhibition percentages in vitro. Trichoderma isolates CT5 and G1C were then tested in planta using Coffea arabica cv. caturra plantlets. Endophytic colonization was verified, followed by in planta growth promotion and antagonism assays. ConclusionsResults show that Trichoderma isolates CT5 and G1C have potential for plant growth promotion and antagonism against Mycena citricolor, reducing incidence and severity, and preventing plant mortality. 
    more » « less