skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure and equation of state of Bi2Sr2Can−1CunO2n+4+δ from x-ray diffraction to megabar pressures
Pressure is a unique tuning parameter for probing the properties of materials, and it has been particularly useful for studies of electronic materials such as high-temperature cuprate superconductors. Here we report the effects of quasihydrostatic compression produced by a neon pressure medium on the structures of bismuth-based high-Tc cuprate superconductors with the nominal composition Bi2Sr2Can−1CunO2n+4+δ (n = 1, 2, 3) up to 155 GPa. The structures of all three compositions obtained by synchrotron x-ray diffraction can be described as pseudotetragonal over the entire pressure range studied. We show that previously reported pressure-induced distortions and structural changes arise from the large strains that can be induced in these layered materials by nonhydrostatic stresses. The pressure-volume equations of state (EOS) measured under these quasihydrostatic conditions cannot be fit to single phenomenological formulation over the pressure ranges studied, starting below 20 GPa. This intrinsic anomalous compression as well as the sensitivity of Bi2Sr2Can−1CunO2n+4+δ to deviatoric stresses provide explanations for the numerous inconsistencies in reported EOS parameters for these materials. We conclude that the anomalous compressional behavior of all three compositions is a manifestation of the changes in electronic properties that are also responsible for the remarkable nonmonotonic dependence of Tc with pressure, including the increase in Tc at the highest pressures studied so far for each. Transport and spectroscopic measurements up to megabar pressures are needed to fully characterize these cuprates and explore higher possible critical temperatures in these materials.  more » « less
Award ID(s):
2104881
PAR ID:
10488391
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
-
Publisher / Repository:
DOE Pages
Date Published:
Journal Name:
Physical Review Materials
Edition / Version:
1
Volume:
7
Issue:
6
ISSN:
2475-9953
Page Range / eLocation ID:
064803
Format(s):
Medium: X Size: 3.7MB Other: pdf
Size(s):
3.7MB
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    This work presents the evolution of the electronic properties of kagome superconductor CsV3Sb5 under pressure. The magnetoresistance under high fields of 43 T showed clear Shubnikov–de Haas (SdH) oscillations with multiple frequencies up to 2000 T. With the application of pressure, we observed a sudden change in SdH oscillations with the disappearance of the high-frequency signal near the critical pressure Pc1 ∼ 0.7 GPa. We argue that this change could be due to a reconstruction of the Fermi surface (FS) in CsV3Sb5. To interpret our experimental data, we computed the electronic band structures and FS of CsV3Sb5 using ab initio density functional theory. Our results indicate that both the electronic bands and FS of CsV3Sb5 are highly sensitive to external pressure. The deformation of FS pockets with increasing pressure qualitatively explains our experimental observations. The pressure-driven FS instability in CsV3Sb5 may induce changes in its electronic states, such as superconductivity, charge density wave, nontrivial topology, and more. Therefore, these results are invaluable for gaining insights into these electronic states in CsV3Sb5, as well as in other kagome materials. 
    more » « less
  2. - (Ed.)
    Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. A detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented. 
    more » « less
  3. Stephen E. Nagler (Ed.)
    One of the strongest justifications for the continued search for superconductivity within the single-band Hubbard Hamiltonian originates from the apparent success of single-band ladder-based theories in predicting the occurrence of superconductivity in the cuprate coupled-ladder compound Sr{14−x}Ca{x}Cu{24}O{41}. Recent theoretical works have, however, shown the complete absence of quasi-long-range superconducting correlations within the hole-doped multiband ladder Hamiltonian including realistic Coulomb repulsion between holes on oxygen sites and oxygen-oxygen hole hopping. Experimentally, superconductivity in Sr{14−x}Ca{x}Cu{24}O{41} occurs only under pressure and is preceded by dramatic transition from one to two dimensions that remains not understood. We show that understanding the dimensional crossover requires adopting a valence transition model within which there occurs transition in Cu-ion ionicity from +2 to +1 , with transfer of holes from Cu to O ions [S. Mazumdar, Phys. Rev. B 98, 205153 (2018)]. The driving force behind the valence transition is the closed-shell electron configuration of Cu^{1+} , a feature shared by cations of all oxides with a negative charge-transfer gap. We make a falsifiable experimental prediction for Sr{14−x}Ca{x}Cu{24}O{41} and discuss the implications of our results for layered two-dimensional cuprates. 
    more » « less
  4. Many seemingly contradictory experimental findings concerning the superconducting state in Sr2RuO4 can be accounted for on the basis of a conjectured accidental degeneracy between two patterns of pairing that are unrelated to each other under the (D4h) symmetry of the crystal: a dx2-y2-wave (B1g) and a gxy(x2-y2)-wave (A2g) superconducting state. In this paper, we propose a generic multiband model in which the g-wave pairing involving the xz and yz orbitals arises from second-nearest-neighbor BCS channel effective interactions. Even if timereversal symmetry is broken in a d + ig state, such a superconductor remains gapless with a Bogoliubov Fermi surface that approximates a (vertical) line node. The model gives rise to a strain-dependent splitting between the critical temperature Tc and the time-reversal symmetry-breaking temperature TTRSB that is qualitatively similar to some of the experimental observations in Sr2RuO4. 
    more » « less
  5. Abstract Fe 3 + δ GeTe 2 (FGT) has proved to be an interesting van der Waals (vdW) ferromagnetic compound with a tunable Curie temperature ( T C ). However, the underlying mechanism for varying T C remains elusive. Here, we systematically investigate and compare low-temperature magnetic properties of single crystalline FGT samples that exhibit T C s ranging from 160 K to 205 K. Spin stiffness (D) and spin excitation gap (Δ) are extracted using Bloch’s theory for crystals with varying Fe content. Compared to Cr-based vdW ferromagnets, FGT compounds have higher spin stiffness values but lower spin wave excitation gaps. We discuss the implication of these relationships in Fe–Fe ion magnetic interactions in FGT unit cells. The itinerancy of magnetic electrons is measured and discussed under the Rhodes–Wohlfarth ratio (RWR) and the Takahashi theory. 
    more » « less