Many seemingly contradictory experimental findings concerning the superconducting state in Sr2RuO4 can be accounted for on the basis of a conjectured accidental degeneracy between two patterns of pairing that are unrelated to each other under the (D4h) symmetry of the crystal: a dx2-y2-wave (B1g) and a gxy(x2-y2)-wave (A2g) superconducting state. In this paper, we propose a generic multiband model in which the g-wave pairing involving the xz and yz orbitals arises from second-nearest-neighbor BCS channel effective interactions. Even if timereversal symmetry is broken in a d + ig state, such a superconductor remains gapless with a Bogoliubov Fermi surface that approximates a (vertical) line node. The model gives rise to a strain-dependent splitting between the critical temperature Tc and the time-reversal symmetry-breaking temperature TTRSB that is qualitatively similar to some of the experimental observations in Sr2RuO4.
more »
« less
Theory of Josephson scanning microscopy with s -wave tip on unconventional superconducting surface: Application to Bi2Sr2CaCu2O8+δ
Josephson scanning tunneling microscopy (JSTM) is a powerful probe of the local superconducting order parameter, but studies have been largely limited to cases where the superconducting sample and superconducting tip both have the same gap symmetry—either s-wave or d-wave. It has been generally assumed that, in an ideal s-to-d JSTM experiment, the critical current would vanish everywhere, as expected for ideal c-axis planar junctions. We show here that this is not the case. Employing first-principlesWannier functions for Bi2Sr2CaCu2O8+δ , we develop a scheme to compute the Josephson critical current (Ic) and quasiparticle tunneling current measured by JSTM with subangstrom resolution. We demonstrate that the critical current for tunneling between an s-wave tip and a superconducting cuprate sample has the largest magnitude above O sites and it vanishes above Cu sites. Ic changes sign under π/2 rotation and its average over a unit cell vanishes, as a direct consequence of the d-wave gap symmetry in cuprates. Further, we show that Ic is strongly suppressed in the close vicinity of a Zn-like impurity owing to suppression of the superconducting order parameter. More interestingly, Ic acquires nonvanishing values above the Cu sites near the impurity. The critical current modulations produced by the impurity occur at characteristic wave vectors distinct from the quasiparticle interference (QPI) analog. Furthermore, the quasiparticle tunneling spectra in the JSTM setup shows coherence peaks and impurity-induced resonances shifted by the s-wave tip gap. We discuss the similarities and differences in JSTM observables and conventional STM observables, making specific predictions that can be tested in future JSTM experiments.
more »
« less
- PAR ID:
- 10644675
- Publisher / Repository:
- APS Physical Review Journals
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 110
- Issue:
- 18
- ISSN:
- 2469-9950
- Page Range / eLocation ID:
- 184519
- Subject(s) / Keyword(s):
- Superconductivity, Josephson effect, scanning Josephson microscope, cuprate superconductors
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stephen E. Nagler (Ed.)One of the strongest justifications for the continued search for superconductivity within the single-band Hubbard Hamiltonian originates from the apparent success of single-band ladder-based theories in predicting the occurrence of superconductivity in the cuprate coupled-ladder compound Sr{14−x}Ca{x}Cu{24}O{41}. Recent theoretical works have, however, shown the complete absence of quasi-long-range superconducting correlations within the hole-doped multiband ladder Hamiltonian including realistic Coulomb repulsion between holes on oxygen sites and oxygen-oxygen hole hopping. Experimentally, superconductivity in Sr{14−x}Ca{x}Cu{24}O{41} occurs only under pressure and is preceded by dramatic transition from one to two dimensions that remains not understood. We show that understanding the dimensional crossover requires adopting a valence transition model within which there occurs transition in Cu-ion ionicity from +2 to +1 , with transfer of holes from Cu to O ions [S. Mazumdar, Phys. Rev. B 98, 205153 (2018)]. The driving force behind the valence transition is the closed-shell electron configuration of Cu^{1+} , a feature shared by cations of all oxides with a negative charge-transfer gap. We make a falsifiable experimental prediction for Sr{14−x}Ca{x}Cu{24}O{41} and discuss the implications of our results for layered two-dimensional cuprates.more » « less
-
Defect engineering in two-dimensional semiconductors has been exploited to tune the optoelectronic properties and introduce new quantum states in the band gap. Chalcogen vacancies in transition metal dichalcogenides in particular have been found to strongly impact charge carrier concentration and mobility in 2D transistors as well as feature subgap emission and single-photon response. In this Letter, we investigate the layer-dependent charge-state lifetime of Se vacancies in . In one monolayer , we observe ultrafast charge transfer from the lowest unoccupied orbital of the top Se vacancy to the graphene substrate within measured via the current saturation in scanning tunneling approach curves. For Se vacancies decoupled by transition metal dichalcogenide (TMD) multilayers, we find a subexponential increase of the charge lifetime from in bilayer to a few nanoseconds in four-layer , alongside a reduction of the defect state binding energy. Additionally, we attribute the continuous suppression and energy shift of the in-gap defect state resonances at very close tip-sample distances to a current saturation effect. Our results provide a key measure of the layer-dependent charge transfer rate of chalcogen vacancies in TMDs. Published by the American Physical Society2025more » « less
-
Understanding electronic interactions in high-temperature superconductors is an outstanding challenge. In the widely studied cuprate materials, experimental evidence points to strong electron-phonon ( -ph) coupling and broad photoemission spectra. Yet, the microscopic origin of this behavior is not fully understood. Here, we study -ph interactions and polarons in a prototypical parent (undoped) cuprate, (LCO), by means of first-principles calculations. Leveraging parameter-free Hubbard-corrected density functional theory, we obtain a ground state with the band gap and Cu magnetic moment in nearly exact agreement with experiments. This enables a quantitative characterization of -ph interactions. Our calculations reveal two classes of longitudinal optical (LO) phonons with strong -ph coupling to hole states. These modes consist of bond stretching and bond bending in the Cu-O plane as well as vibrations of apical O atoms. The hole spectral functions, obtained with a cumulant method that can capture strong -ph coupling, exhibit broad quasiparticle peaks with a small spectral weight ( ) and pronounced LO-phonon sidebands characteristic of polaron effects. Our calculations predict features observed in photoemission spectra, including a 40-meV peak in the -ph coupling distribution function not explained by existing models. These results show that the universal strong -ph coupling found experimentally in doped lanthanum cuprates is also present in the parent compound, and elucidate its microscopic origin.more » « less
-
The existence of a quantum critical point (QCP) and fluctuations around it are believed to be important for understanding the phase diagram in unconventional superconductors such as cuprates, iron pnictides, and heavy fermion superconductors. However, the QCP is usually buried deep within the superconducting dome and is difficult to investigate. The connection between quantum critical fluctuations and superconductivity remains an outstanding problem in condensed matter. Here combining both electrical transport and Nernst experiments, we explicitly demonstrate the onset of superconductivity at an unconventional QCP in gate-tuned monolayer tungsten ditelluride , with features incompatible with the conventional Bardeen-Cooper-Schrieffer scenario. The results lead to a superconducting phase diagram that is distinguished from other known superconductors. Two distinct gate-tuned quantum phase transitions are observed at the ends of the superconducting dome. We find that quantum fluctuations around the QCP of the underdoped regime are essential for understanding how the monolayer superconductivity is established. The unconventional phase diagram we report here illustrates a previously unknown relation between superconductivity and QCP. Published by the American Physical Society2025more » « less
An official website of the United States government

