skip to main content


This content will become publicly available on December 1, 2024

Title: Accurate equation of state of H2−He binary mixtures up to 5.4 GPa
Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. A detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented.  more » « less
Award ID(s):
2104881
NSF-PAR ID:
10488406
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
-
Publisher / Repository:
DOE pages
Date Published:
Journal Name:
Physical Review B
Edition / Version:
1
Volume:
108
Issue:
22
ISSN:
2469-9950
Page Range / eLocation ID:
224112
Subject(s) / Keyword(s):
["Hydrogen","helium","equation of state","Brillouin scattering","high pressure"]
Format(s):
Medium: X Size: 4.1 MB Other: pdf
Size(s):
["4.1 MB"]
Sponsoring Org:
National Science Foundation
More Like this
  1. - (Ed.)
    Pressure is a unique tuning parameter for probing the properties of materials, and it has been particularly useful for studies of electronic materials such as high-temperature cuprate superconductors. Here we report the effects of quasihydrostatic compression produced by a neon pressure medium on the structures of bismuth-based high-Tc cuprate superconductors with the nominal composition Bi2Sr2Can−1CunO2n+4+δ (n = 1, 2, 3) up to 155 GPa. The structures of all three compositions obtained by synchrotron x-ray diffraction can be described as pseudotetragonal over the entire pressure range studied. We show that previously reported pressure-induced distortions and structural changes arise from the large strains that can be induced in these layered materials by nonhydrostatic stresses. The pressure-volume equations of state (EOS) measured under these quasihydrostatic conditions cannot be fit to single phenomenological formulation over the pressure ranges studied, starting below 20 GPa. This intrinsic anomalous compression as well as the sensitivity of Bi2Sr2Can−1CunO2n+4+δ to deviatoric stresses provide explanations for the numerous inconsistencies in reported EOS parameters for these materials. We conclude that the anomalous compressional behavior of all three compositions is a manifestation of the changes in electronic properties that are also responsible for the remarkable nonmonotonic dependence of Tc with pressure, including the increase in Tc at the highest pressures studied so far for each. Transport and spectroscopic measurements up to megabar pressures are needed to fully characterize these cuprates and explore higher possible critical temperatures in these materials. 
    more » « less
  2. Abstract Knowledge of oxygen diffusion in garnet is crucial for a correct interpretation of oxygen isotope signatures in natural samples. A series of experiments was undertaken to determine the diffusivity of oxygen in garnet, which remains poorly constrained. The first suite included high-pressure (HP), nominally dry experiments performed in piston-cylinder apparatus at: (1) T = 1050–1600 °C and P = 1.5 GPa and (2) T = 1500 °C and P = 2.5 GPa using yttrium aluminum garnet (YAG; Y3Al5O12) cubes. Second, HP H2O-saturated experiments were conducted at T = 900 °C and P = 1.0–1.5 GPa, wherein YAG crystals were packed into a YAG + Corundum powder, along with 18O-enriched H2O. Third, 1 atm experiments with YAG cubes were performed in a gas-mixing furnace at T = 1500–1600 °C under Ar flux. Finally, an experiment at T = 900 °C and P = 1.0 GPa was done using a pyrope cube embedded into pyrope powder and 18O-enriched H2O. Experiments using grossular were not successful. Profiles of 18O/(18O+16O) in the experimental charges were analyzed with three different secondary ion mass spectrometers (SIMS): sensitive high-resolution ion microprobe (SHRIMP II and SI), CAMECA IMS-1280, and NanoSIMS. Considering only the measured length of 18O diffusion profiles, similar results were obtained for YAG and pyrope annealed at 900 °C, suggesting limited effects of chemical composition on oxygen diffusivity. However, in both garnet types, several profiles deviate from the error function geometry, suggesting that the behavior of O in garnet cannot be fully described as simple concentration-independent diffusion, certainly in YAG and likely in natural pyrope as well. The experimental results are better described by invoking O diffusion via two distinct pathways with an inter-site reaction allowing O to move between these pathways. Modeling this process yields two diffusion coefficients (D values) for O, one of which is approximately two orders of magnitude higher than the other. Taken together, Arrhenius relationships are:log⁡Dm2s-1=-7.2(±1.3)+(-321(±32)kJmol-12.303RT) for the slow pathway, andlog⁡Dm2s-1=-5.4(±0.7)+(-321(±20)kJmol-12.303RT) for the fast pathway. We interpret the two pathways as representing diffusion following vacancy and inter-stitial mechanisms, respectively. Regardless, our new data suggest that the slow mechanism is prevalent in garnet with natural compositions, and thus is likely to control the retentivity of oxygen isotopic signatures in natural samples. The diffusivity of oxygen is similar to Fe-Mn diffusivity in garnet at 1000–1100 °C and Ca diffusivity at 850 °C. However, the activation energy for O diffusion is larger, leading to lower diffusivities at P-T conditions characterizing crustal metamorphism. Therefore, original O isotopic signatures can be retained in garnets showing major element zoning partially re-equilibrated by diffusion, with the uncertainty caveat of extrapolating the experimental data to lower temperature conditions. 
    more » « less