skip to main content


Title: Oxygen diffusion in garnet: Experimental calibration and implications for timescales of metamorphic processes and retention of primary O isotopic signatures
Abstract Knowledge of oxygen diffusion in garnet is crucial for a correct interpretation of oxygen isotope signatures in natural samples. A series of experiments was undertaken to determine the diffusivity of oxygen in garnet, which remains poorly constrained. The first suite included high-pressure (HP), nominally dry experiments performed in piston-cylinder apparatus at: (1) T = 1050–1600 °C and P = 1.5 GPa and (2) T = 1500 °C and P = 2.5 GPa using yttrium aluminum garnet (YAG; Y3Al5O12) cubes. Second, HP H2O-saturated experiments were conducted at T = 900 °C and P = 1.0–1.5 GPa, wherein YAG crystals were packed into a YAG + Corundum powder, along with 18O-enriched H2O. Third, 1 atm experiments with YAG cubes were performed in a gas-mixing furnace at T = 1500–1600 °C under Ar flux. Finally, an experiment at T = 900 °C and P = 1.0 GPa was done using a pyrope cube embedded into pyrope powder and 18O-enriched H2O. Experiments using grossular were not successful. Profiles of 18O/(18O+16O) in the experimental charges were analyzed with three different secondary ion mass spectrometers (SIMS): sensitive high-resolution ion microprobe (SHRIMP II and SI), CAMECA IMS-1280, and NanoSIMS. Considering only the measured length of 18O diffusion profiles, similar results were obtained for YAG and pyrope annealed at 900 °C, suggesting limited effects of chemical composition on oxygen diffusivity. However, in both garnet types, several profiles deviate from the error function geometry, suggesting that the behavior of O in garnet cannot be fully described as simple concentration-independent diffusion, certainly in YAG and likely in natural pyrope as well. The experimental results are better described by invoking O diffusion via two distinct pathways with an inter-site reaction allowing O to move between these pathways. Modeling this process yields two diffusion coefficients (D values) for O, one of which is approximately two orders of magnitude higher than the other. Taken together, Arrhenius relationships are:log⁡Dm2s-1=-7.2(±1.3)+(-321(±32)kJmol-12.303RT) for the slow pathway, andlog⁡Dm2s-1=-5.4(±0.7)+(-321(±20)kJmol-12.303RT) for the fast pathway. We interpret the two pathways as representing diffusion following vacancy and inter-stitial mechanisms, respectively. Regardless, our new data suggest that the slow mechanism is prevalent in garnet with natural compositions, and thus is likely to control the retentivity of oxygen isotopic signatures in natural samples. The diffusivity of oxygen is similar to Fe-Mn diffusivity in garnet at 1000–1100 °C and Ca diffusivity at 850 °C. However, the activation energy for O diffusion is larger, leading to lower diffusivities at P-T conditions characterizing crustal metamorphism. Therefore, original O isotopic signatures can be retained in garnets showing major element zoning partially re-equilibrated by diffusion, with the uncertainty caveat of extrapolating the experimental data to lower temperature conditions.  more » « less
Award ID(s):
2004618
NSF-PAR ID:
10421699
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
107
Issue:
7
ISSN:
0003-004X
Page Range / eLocation ID:
1425 to 1441
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes. 
    more » « less
  2. Eighteen successful diffusion couple experiments in 8-component SiO2–TiO2–Al2O3–FeO–MgO–CaO–Na2O–K2O basaltic melts were conducted at 1260°C and 0.5 GPa and at 1500°C and 1.0 GPa. These experiments are combined with previous data at 1350°C and 1.0 GPa (Guo and Zhang, 2018) to study the temperature dependence of multicomponent diffusion in basaltic melts. Effective binary diffusion coefficients of components with monotonic diffusion profiles were extracted and show a strong dependence on their counter-diffusing component even though the average (or interface) compositions are the same. The diffusion matrix at 1260°C was obtained by simultaneously fitting diffusion profiles of all diffusion couple experiments as well as appropriate data from the literature. All features of concentration profiles in both diffusion couples and mineral dissolution are well reproduced by this new diffusion matrix. At 1500°C, only diffusion couple experiments are used to obtain the diffusion matrix. Eigenvectors of the diffusion matrix are used to discuss the diffusion (exchange) mechanism, and eigenvalues characterize the diffusion rate. Diffusion mechanisms at both 1260 and 1500°C are inferred from eigenvectors of diffusion matrices and compared with those at 1350°C reported in Guo and Zhang (2018). There is indication that diffusion eigenvectors in basaltic melts do not depend much on temperature, but complexity is present for some eigenvectors. The two slowest eigenvectors involve the exchange of SiO2 and/or Al2O3 with nonalkalis. The third slowest eigenvector is due to the exchange of divalent oxides with other oxides. The fastest eigenvector is due to the exchange of Na2O with other oxide components. Some eigenvalues differ from each other by less than 1/3, and their eigenvectors are less well defined. We define small difference in eigenvalues as near degeneracy. In strict mathematical degeneracy, eigenvectors are not uniquely defined because any linear combination of two eigenvectors is also an eigenvector. In the case of near degeneracy, more constraints either in terms of higher data quality or more experiments are needed to resolve the eigenvectors. We made a trial effort to generate a set of average eigenvectors, which are assumed to be constant as temperature varies. The corresponding eigenvalues are roughly Arrhenian. Thus, the temperature-dependent diffusion matrix can be roughly predicted. The method is applied to predict experimental diffusion profiles in basaltic melts during olivine and anorthite dissolution at ~1400°C with preliminary success. We further applied our diffusion matrix to investigate multicomponent diffusion during magma mixing in the Bushveld Complex and found such diffusion may result in an increased likelihood of sulfide and Fe-Ti oxide mineralization. 
    more » « less
  3. Abstract

    Fluid-mediated calcium metasomatism is often associated with strong silica mobility and the presence of chlorides in solution. To help quantify mass transfer at lower crustal and upper mantle conditions, we measured quartz solubility in H2O-CaCl2 solutions at 0.6–1.4 GPa, 600–900 °C, and salt concentrations to 50 mol%. Solubility was determined by weight loss of single-crystals using hydrothermal piston-cylinder methods. All experiments were conducted at salinity lower than salt saturation. Quartz solubility declines exponentially with added CaCl2 at all conditions investigated, with no evidence for complexing between silica and Ca. The decline in solubility is similar to that in H2O-CO2 but substantially greater than that in H2O-NaCl at the same pressure and temperature. At each temperature, quartz solubility at low salinity (XCaCl2 < 0.1) depends strongly on pressure, whereas at higher XCaCl2 it is nearly pressure independent. This behavior is consistent with a transition from an aqueous solvent to a molten salt near XCaCl2 ~0.1. The solubility data were used to develop a thermodynamic model of H2O-CaCl2 fluids. Assuming ideal molten-salt behavior and utilizing previous models for polymerization of hydrous silica, we derived values for the activity of H2O (aH2O), and for the CaCl2 dissociation factor (α), which may vary from 0 (fully associated) to 2 (fully dissociated). The model accurately reproduces our data along with those of previous work and implies that, at conditions of this study, CaCl2 is largely associated (<0.2) at H2O density <0.85 g/cm3. Dissociation rises isothermally with increasing density, reaching ~1.4 at 600 °C, 1.4 GPa. The variation in silica molality with aH2O in H2O-CaCl2 is nearly identical to that in H2O-CO2 solutions at 800 °C and 1.0 GPa, consistent with the absence of Ca-silicate complexing. The results suggest that the ionization state of the salt solution is an important determinant of aH2O, and that H2O-CaCl2 fluids exhibit nearly ideal molecular mixing over a wider range of conditions than implied by previous modeling. The new data help interpret natural examples of large-scale Ca-metasomatism in a wide range of lower crustal and upper mantle settings.

     
    more » « less
  4. Abstract

    Many lines of evidence from high P–T experiments, thermodynamic models, and natural observations suggest that slab-derived aqueous fluids, which flux mantle wedges contain variable amounts of dissolved carbon. However, constraints on the effects of H2O–CO2 fluids on mantle melting, particularly at mantle wedge P–T conditions, are limited. Here, we present new piston cylinder experiments on fertile and depleted peridotite compositions with 3.5 wt.% H2O and XCO2 [= molar CO2 / (CO2 + H2O)] of 0.04–0.17. Experiments were performed at 2–3 GPa and 1350°C to assess how temperature, peridotite fertility, and XCO2 of slab-derived fluid affects partial melting in mantle wedges. All experiments produce olivine + orthopyroxene +7 to 41 wt.% partial melt. Our new data, along with previous lower temperature data, show that as mantle wedge temperature increases, primary melts become richer in SiO2, FeO*, and MgO and poorer CaO, Al2O3, and alkalis when influenced by H2O–CO2 fluids. At constant P–T and bulk H2O content, the extent of melting in the mantle wedge is largely controlled by peridotite fertility and XCO2 of slab-fluid. High XCO2 depleted compositions generate ~7 wt.% melt, whereas, at identical P–T, low XCO2 fertile compositions generate ~30 to 40 wt.% melt. Additionally, peridotite fertility and XCO2 have significant effects on peridotite partial melt compositions. At a constant P–T–XCO2, fertile peridotites generate melts richer in CaO and Al2O3 and poorer in SiO2, MgO + FeO, and alkalis. Similar to previous experimental studies, at a constant P–T fertility condition, as XCO2 increases, SiO2 and CaO of melts systematically decrease and increase, respectively. Such distinctive effects of oxidized form of dissolved carbon on peridotite partial melt compositions are not observed if the carbon-bearing fluid is reduced, such as CH4-bearing. Considering the large effect of XCO2 on melt SiO2 and CaO concentrations and the relatively oxidized nature of arc magmas, we compare the SiO2/CaO of our experimental melts and melts from previous peridotite + H2O ± CO2 studies to the SiO2/CaO systematics of primitive arc basalts and ultra-calcic, silica-undersaturated arc melt inclusions. From this comparison, we demonstrate that across most P–T–fertility conditions predicted for mantle wedges, partial melts from bulk compositions with XCO2 ≥ 0.11 have lower SiO2/CaO than all primitive arc melts found globally, even when correcting for olivine fractionation, whereas partial melts from bulk compositions with XCO2 = 0.04 overlap the lower end of the SiO2/CaO field defined by natural data. These results suggest that the upper XCO2 limit of slab-fluids influencing primary arc magma formation is 0.04 < XCO2 < 0.11, and this upper limit is likely to apply globally. Lastly, we show that the anomalous SiO2/CaO and CaO/Al2O3 signatures observed in ultra-calcic arc melt inclusions can be reproduced by partial melting of either CO2-bearing hydrous fertile and depleted peridotites with 0 < XCO2 < 0.11 at 2–3 GPa, or from nominally CO2-free hydrous fertile peridotites at P > 3 GPa.

     
    more » « less
  5. Teagle, Damon A (Ed.)
    The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8  107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a  1)  1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels. 
    more » « less