skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Literacy and STEM Teachers Adapt AI Ethics Curriculum
This article examines the ways secondary computer science and English Language Arts teachers in urban, suburban, and semi-rural schools adapted a project-based AI ethics curriculum to make it better fit their local contexts. AI ethics is an urgent topic with tangible consequences for youths’ current and future lives, but one that is rarely taught in schools. Few teachers have formal training in this area as it is an emerging field even at the university level. Exploring AI ethics involves examining biases related to race, gender, and social class, a challenging task for all teachers, and an unfamiliar one for most computer science teachers. It also requires teaching technical content which falls outside the comfort zone of most humanities teachers. Although none of our partner teachers had previously taught an AI ethics project, this study demonstrates that their expertise and experience in other domains played an essential role in providing high quality instruction. Teachers designed and redesigned tasks and incorporated texts and apps to ensure the AI ethics project would adhere to district and department level requirements; they led equity-focused inquiry in a way that both protected vulnerable students and accounted for local cultures and politics; and they adjusted technical content and developed hands-on computer science experiences to better challenge and engage their students. We use Mishra and Kohler’s TPACK framework to highlight the ways teachers leveraged their own expertise in some areas, while relying on materials and support from our research team in others, to create stronger learning experiences.  more » « less
Award ID(s):
1934151
PAR ID:
10488548
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
13
ISSN:
2159-5399
Page Range / eLocation ID:
16048 to 16055
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At a time when computing continues to gain importance in society, it is more crucial than ever to ensure that computer science education meets the needs of all students. To this end, the Computer Science Teachers Association (CSTA) is updating its K-12 computer science (CS) standards. As a prelude to the standards revision, CSTA – working with many partners – has launched a project, Reimagining CS Pathways: High School and Beyond, to articulate what CS content is essential for all high school graduates to know and to establish pathways for continued study of CS beyond that foundational content. The Reimagining project drew on the expertise and experiences of dozens of participants – including high school CS teachers, college CS faculty, state and local education leaders, CS education researchers, and those working for nonprofits and in the tech industry. These participants reflected diversity across many dimensions, including demographics, role, and expertise. They participated in focus groups, interviews, and in-person convenings, and they provided substantial asynchronous feedback. The result of these extensive efforts is contained in this report, which articulates the foundational CS content and resulting pathways. The foundational CS content is organized into Topic Areas, Pillars, and Dispositions. The Topic Areas, which reflect the content that is essential for all high school graduates, are 1) Algorithms, 2), Programming, 3) Data and Analysis, 4) Computing Systems and Security, and 5) Preparation for the Future. The Pillars, which reflect essential ideas and practices that cut across all of the Topic Areas, are 1) Impacts and Ethics, 2) Inclusive Collaboration, 3) Computational Thinking, and 4) Human-Centered Design. While they are not explicitly taught, the goal is to develop a set of specific dispositions in CS. These Dispositions are persistence, reflectiveness, creativity, curiosity, critical thinking, and sense of belonging in CS. There are many possible pathways stemming from this foundational content, ranging from Cybersecurity and Artificial Intelligence to X + CS (where another subject, such as Journalism or Biology, is integrated with the study of computing). Implementation of these pathways will vary significantly depending on community priorities and contexts. We recognize that schools will need to be selective in their implementation of CS pathways due to limited resources, and we make recommendations for how to select which options to implement. Woven throughout this work is a commitment to improving equity in CS education. This commitment to equity is embedded throughout both the process and the outcome of the Reimagining project. It manifests in an effort to reimagine CS to ensure opportunities for all students and to prepare them for a world increasingly powered by computing. 
    more » « less
  2. The AI4GA project is developing a nine-week elective course called Living and Working with Artificial Intelligence and piloting it in several Georgia middle schools. Since we aspire to educate all students about AI, the course addresses a wide range of student abilities, levels of academic preparedness, and prior computing experience, and leaves room for teachers to adapt the material to their own students' needs and interests. The course content is primarily focused on unplugged activities and online demonstration programs. We also provide small programming projects using AI tools as an option for teachers to incorporate. In this poster we describe lessons learned from initial pilot offerings by five teachers who taught 12 sections of the course totaling 299 students. We present evidence that middle school students can successfully engage with substantive technical content about Artificial Intelligence. 
    more » « less
  3. As artificial intelligence (AI) technology becomes increasingly pervasive, it is critical that students recognize AI and how it can be used. There is little research exploring learning capabilities of elementary students and the pedagogical supports necessary to facilitate students’ learning. PrimaryAI was created as a 3rd-5th grade AI curriculum that utilizes problem-based and immersive learning within an authentic life science context through four units that cover machine learning, computer vision, AI planning, and AI ethics. The curriculum was implemented by two upper elementary teachers during Spring 2022. Based on pre-test/post-test results, students were able to conceptualize AI concepts related to machine learning and computer vision. Results showed no significant differences based on gender. Teachers indicated the curriculum engaged students and provided teachers with sufficient scaffolding to teach the content in their classrooms. Recommendations for future implementations include greater alignment between the AI and life science concepts, alterations to the immersive problem-based learning environment, and enhanced connections to local animal populations. 
    more » « less
  4. The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a Saturday Program. The program has provided inner-city high school students with out-of-school, hands-on educational experiences focusing on both professional and technical skills. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. The program is held on community college campuses as a way to show students that they are welcome in a college environment, which has inspired participants to have confidence in their own abilities to attend college and pursue educational and career goals in technology fields. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The virtual four-day Summer Teachers’ Workshop allows high school and community college educators from throughout the United States to experience the same program that is used for the high school students. Although the workshop is virtual, participants are provided with materials and supplies, so they have the same hands-on experiences as the students in the Saturday program. 
    more » « less
  5. null (Ed.)
    A major goal of AP Computer Science Principles (CSP) is equity, that is, that all students should have the opportunity to learn computer science at a basic level. In this experience report, we explore how well the Code.org version of AP CSP meets the needs of Deaf students. We report on a professional development workshop for 14 teachers that teach at schools for the Deaf or in Deaf programs in mainstream schools. These schools and programs use the bilingual approach to teaching with instruction in American Sign Language (ASL) and other resources (e.g., textbooks, workbooks, videos, websites, computer apps, exams) in English. Synthesizing the experiences and advice of the teachers and workshop staff, we offer lessons learned for CS teachers in schools for the Deaf and Deaf programs in mainstream schools, mainstream CS teachers who may have one or a few Deaf students in their classes, and AP CSP content providers. Index Terms—Computer Science Principles, Deaf, English Language Learners, Bilingual, Professional Development 
    more » « less