The AI4GA project is developing a nine-week elective course called Living and Working with Artificial Intelligence and piloting it in several Georgia middle schools. Since we aspire to educate all students about AI, the course addresses a wide range of student abilities, levels of academic preparedness, and prior computing experience, and leaves room for teachers to adapt the material to their own students' needs and interests. The course content is primarily focused on unplugged activities and online demonstration programs. We also provide small programming projects using AI tools as an option for teachers to incorporate. In this poster we describe lessons learned from initial pilot offerings by five teachers who taught 12 sections of the course totaling 299 students. We present evidence that middle school students can successfully engage with substantive technical content about Artificial Intelligence.
more »
« less
Literacy and STEM Teachers Adapt AI Ethics Curriculum
This article examines the ways secondary computer science and English Language Arts teachers in urban, suburban, and semi-rural schools adapted a project-based AI ethics curriculum to make it better fit their local contexts. AI ethics is an urgent topic with tangible consequences for youths’ current and future lives, but one that is rarely taught in schools. Few teachers have formal training in this area as it is an emerging field even at the university level. Exploring AI ethics involves examining biases related to race, gender, and social class, a challenging task for all teachers, and an unfamiliar one for most computer science teachers. It also requires teaching technical content which falls outside the comfort zone of most humanities teachers. Although none of our partner teachers had previously taught an AI ethics project, this study demonstrates that their expertise and experience in other domains played an essential role in providing high quality instruction. Teachers designed and redesigned tasks and incorporated texts and apps to ensure the AI ethics project would adhere to district and department level requirements; they led equity-focused inquiry in a way that both protected vulnerable students and accounted for local cultures and politics; and they adjusted technical content and developed hands-on computer science experiences to better challenge and engage their students. We use Mishra and Kohler’s TPACK framework to highlight the ways teachers leveraged their own expertise in some areas, while relying on materials and support from our research team in others, to create stronger learning experiences.
more »
« less
- Award ID(s):
- 1934151
- PAR ID:
- 10488548
- Publisher / Repository:
- AAAI Conference on Artificial Intelligence
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 37
- Issue:
- 13
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 16048 to 16055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As artificial intelligence (AI) technology becomes increasingly pervasive, it is critical that students recognize AI and how it can be used. There is little research exploring learning capabilities of elementary students and the pedagogical supports necessary to facilitate students’ learning. PrimaryAI was created as a 3rd-5th grade AI curriculum that utilizes problem-based and immersive learning within an authentic life science context through four units that cover machine learning, computer vision, AI planning, and AI ethics. The curriculum was implemented by two upper elementary teachers during Spring 2022. Based on pre-test/post-test results, students were able to conceptualize AI concepts related to machine learning and computer vision. Results showed no significant differences based on gender. Teachers indicated the curriculum engaged students and provided teachers with sufficient scaffolding to teach the content in their classrooms. Recommendations for future implementations include greater alignment between the AI and life science concepts, alterations to the immersive problem-based learning environment, and enhanced connections to local animal populations.more » « less
-
null (Ed.)A major goal of AP Computer Science Principles (CSP) is equity, that is, that all students should have the opportunity to learn computer science at a basic level. In this experience report, we explore how well the Code.org version of AP CSP meets the needs of Deaf students. We report on a professional development workshop for 14 teachers that teach at schools for the Deaf or in Deaf programs in mainstream schools. These schools and programs use the bilingual approach to teaching with instruction in American Sign Language (ASL) and other resources (e.g., textbooks, workbooks, videos, websites, computer apps, exams) in English. Synthesizing the experiences and advice of the teachers and workshop staff, we offer lessons learned for CS teachers in schools for the Deaf and Deaf programs in mainstream schools, mainstream CS teachers who may have one or a few Deaf students in their classes, and AP CSP content providers. Index Terms—Computer Science Principles, Deaf, English Language Learners, Bilingual, Professional Developmentmore » « less
-
null (Ed.)A major goal of AP Computer Science Principles (CSP) is equity, that is, that all students should have the opportunity to learn computer science at a basic level. In this experience report, we explore how well the Code.org version of AP CSP meets the needs of Deaf students. We report on a professional development workshop for 14 teachers that teach at schools for the Deaf or in Deaf programs in mainstream schools. These schools and programs use the bilingual approach to teaching with instruction in American Sign Language (ASL) and other resources (e.g., textbooks, workbooks, videos, websites, computer apps, exams) in English. Synthesizing the experiences and advice of the teachers and workshop staff, we offer lessons learned for CS teachers in schools for the Deaf and Deaf programs in mainstream schools, mainstream CS teachers who may have one or a few Deaf students in their classes, and AP CSP content providers. Index Terms—Computer Science Principles, Deaf, English Language Learners, Bilingual, Professional Developmentmore » « less
-
Around the world, many K-12 school systems are seeking ways to provide youth with computer science (CS) learning experiences. Often organizations aim to develop these opportunities by building capacity among science, technology, engineering, and mathematics teachers. In other instances, school may engage with language arts, history, and library teachers to teach computer science content. Seldom, however, do schools leverage the rich opportunities for integrating computer science with physical education (PE). This paper explores an on-going partnership among university researchers, and elementary school coding and PE teachers. During spring of 2021, the group designed and tested coding and physical movement related activities for students to complete across their PE and coding classes. The team iterated on those activities throughout 2021 and 2022. This paper highlights the utility of this unique collaboration and describes some of the initial designs that emerged. The paper also touches on preliminary evaluation of the activities, and notes some of the project team's plans for future iterations. Broadly speaking, the activities piqued student interest and helped advance new perspectives of themselves, CS, and their teachers.more » « less