skip to main content

Title: Semiconducting to Metallic Electronic Landscapes in Defects‐Controlled 2D π‐d Conjugated Coordination Polymer Thin Films

Two‐dimensional coordination polymers (2DCPs) have been predicted to exhibit exotic properties such as superconductivity, topological insulating behavior, catalytic activity, and superior ion transport for energy applications; experimentally, these materials have fallen short of their expectation due to the lack of synthesis protocols that yield continuous, large crystallite domains, and highly ordered thin films with controllable physical and chemical properties. Herein, the fabrication of large‐area, highly ordered 2DCP thin films with large crystallite domains using chemical vapor deposition (CVD) approaches is described. It is demonstrated that defects and the packing motifs of 2DCP thin films may be controlled by adjusting the vapor–vapor and vapor–solid interactions of the metal and organic linker precursors during the CVD fabrication process. Such control allows for the fabrication of defects‐controlled 2DCP thin films that show either semiconducting or metallic behavior. The findings provide the first demonstration of tuning the electrical properties of sub 100 nm‐thick continuous 2DCP thin films by controlling their electronic landscape through defect engineering. As such, it is determined that large‐area, highly ordered 2DCP thin films may undergo a semiconducting to metallic transition that is correlated to changes in morphology, crystalline domain sizes, crystallite orientation, defect interactions, and electronic structure.

more » « less
Award ID(s):
2016191 1824263
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The morphology of semiconducting polymer thin films is known to have a profound effect on their opto-electronic properties. Although considerable efforts have been made to control and understand the processes which influence the structures of these systems, it remains largely unclear what physical factors determine the arrangement of polymer chains in spin-cast films. Here, we investigate the role that the liquid–vapor interfaces in chlorobenzene solutions of poly(3-hexylthiophene) [P3HT] play in the conformational geometries adopted by the polymers. Using all-atom molecular dynamics (MD), and supported by toy-model simulations, we demonstrate that, with increasing concentration, P3HT oligomers in solution exhibit a strong propensity for the liquid–vapor interface. Due to the differential solubility of the backbone and side chains of the oligomers, in the vicinity of this interface, hexyl chains and the thiophene rings, have a clear orientational preference with respect to the liquid surface. At high concentrations, we additionally establish a substantial degree of inter-oligomer alignment and thiophene ring stacking near the interface. Our results broadly concur with the limited existing experimental evidence and we suggest that the interfacial structure can act as a template for film structure. We argue that the differences in solvent affinity of the side chain and backbone moieties are the driving force for the anisotropic orientations of the polymers near the interface. This finer grained description contrasts with the usual monolithic characterization of polymer units. Since this phenomenon can be controlled by concurrent chemical design and the choice of solvents, this work establishes a fabrication principle which may be useful to develop more highly functional polymer films. 
    more » « less
  2. Abstract Chemical vapor deposition (CVD)-grown monolayer (ML) molybdenum disulfide (MoS 2 ) is a promising material for next-generation integrated electronic systems due to its capability of high-throughput synthesis and compatibility with wafer-scale fabrication. Several studies have described the importance of Schottky barriers in analyzing the transport properties and electrical characteristics of MoS 2 field-effect-transistors (FETs) with metal contacts. However, the analysis is typically limited to single devices constructed from exfoliated flakes and should be verified for large-area fabrication methods. In this paper, CVD-grown ML MoS 2 was utilized to fabricate large-area (1 cm × 1 cm) FET arrays. Two different types of metal contacts (i.e. Cr/Au and Ti/Au) were used to analyze the temperature-dependent electrical characteristics of ML MoS 2 FETs and their corresponding Schottky barrier characteristics. Statistical analysis provides new insight about the properties of metal contacts on CVD-grown MoS 2 compared to exfoliated samples. Reduced Schottky barrier heights (SBH) are obtained compared to exfoliated flakes, attributed to a defect-induced enhancement in metallization of CVD-grown samples. Moreover, the dependence of SBH on metal work function indicates a reduction in Fermi level pinning compared to exfoliated flakes, moving towards the Schottky–Mott limit. Optical characterization reveals higher defect concentrations in CVD-grown samples supporting a defect-induced metallization enhancement effect consistent with the electrical SBH experiments. 
    more » « less
  3. Abstract

    Direct synthesis of graphene with well‐defined nanoscale pores over large areas can transform the fabrication of nanoporous atomically thin membranes (NATMs) and greatly enhance their potential for practical applications. However, scalable bottom‐up synthesis of continuous sheets of nanoporous graphene that maintain integrity over large areas has not been demonstrated. Here, it is shown that a simple reduction in temperature during chemical vapor deposition (CVD) on Cu induces in‐situ formation of nanoscale defects (≤2–3 nm) in the graphene lattice, enabling direct and scalable synthesis of nanoporous monolayer graphene. By solution‐casting of hierarchically porous polyether sulfone supports on the as‐grown nanoporous CVD graphene, large‐area (>5 cm2) NATMs for dialysis applications are demonstrated. The synthesized NATMs show size‐selective diffusive transport and effective separation of small molecules and salts from a model protein, with ≈2–100× increase in permeance along with selectivity better than or comparable to state‐of‐the‐art commercially available polymeric dialysis membranes. The membranes constitute the largest fully functional NATMs fabricated via bottom‐up nanopore formation, and can be easily scaled up to larger sizes permitted by CVD synthesis. The results highlight synergistic benefits in blending traditional membrane casting with bottom‐up pore creation during graphene CVD for advancing NATMs toward practical applications.

    more » « less
  4. Abstract

    An overview of recent developments in controlled vapor‐phase growth of 2D transition metal dichalcogenide (2D TMD) films is presented. Investigations of thin‐film formation mechanisms and strategies for realizing 2D TMD films with less‐defective large domains are of central importance because single‐crystal‐like 2D TMDs exhibit the most beneficial electronic and optoelectronic properties. The focus is on the role of the various growth parameters, including strategies for efficiently delivering the precursors, the selection and preparation of the substrate surface as a growth assistant, and the introduction of growth promoters (e.g., organic molecules and alkali metal halides) to facilitate the layered growth of (Mo, W)(S, Se, Te)2atomic crystals on inert substrates. Critical factors governing the thermodynamic and kinetic factors related to chemical reaction pathways and the growth mechanism are reviewed. With modification of classical nucleation theory, strategies for designing and growing various vertical/lateral TMD‐based heterostructures are discussed. Then, several pioneering techniques for facile observation of structural defects in TMDs, which substantially degrade the properties of macroscale TMDs, are introduced. Technical challenges to be overcome and future research directions in the vapor‐phase growth of 2D TMDs for heterojunction devices are discussed in light of recent advances in the field.

    more » « less
  5. Abstract

    The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead‐halide perovskite field‐effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor‐phase epitaxy technique that results in large‐area single‐crystalline cesium lead bromide (CsPbBr3) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin‐film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap‐free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall‐effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2V−1s−1at room temperature to ≈250 cm2V−1s−1at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon‐limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high‐performance perovskite electronic devices.

    more » « less