skip to main content


This content will become publicly available on September 22, 2024

Title: Controlling Polymer Material Structure during Reaction-Induced Phase Transitions
Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques.  more » « less
Award ID(s):
1942508
NSF-PAR ID:
10488642
Author(s) / Creator(s):
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Accounts of Materials Research
Volume:
4
Issue:
9
ISSN:
2643-6728
Page Range / eLocation ID:
798 to 808
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer molecular weight, or chain length distributions, are a core characteristic of a polymer system, with the distribution being intimately tied to the properties and performance of the polymer material. A model is developed for the ideal distribution of polymers made using reversible activation/deactivation of chain ends, with monomer added to the active form of the chain end. The ideal distribution focuses on living chains, with the system having minimal impact from irreversible termination or transfer. This model was applied to ATRP, RAFT, and cationic polymerizations, and was also used to describe complex systems such as blended polymers and block copolymers. The model can easily and accurately be fitted to molecular weight distributions, giving information on the ratio of propagation to deactivation, as well as the mean number of times a chain is activated/deactivated under the polymerization conditions. The mean number of activation cycles per chain is otherwise difficult to assess from conversion data or molecular weight distributions. Since this model can be applied to wide range of polymerizations, giving useful information on the underlying polymerization process, it can be used to give fundamental insights into macromolecular synthesis and reaction outcomes. 
    more » « less
  2. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less
  3. Vapor phase infiltration (VPI) is a post-polymerization modification technique that infuses inorganics into polymers to create organic–inorganic hybrid materials with new properties. Much is yet to be understood about the chemical kinetics underlying the VPI process. The aim of this study is to create a greater understanding of the process kinetics that govern the infiltration of trimethyl aluminum (TMA) and TiCl 4 into PMMA to form inorganic-PMMA hybrid materials. To gain insight, this paper initially examines the predicted results for the spatiotemporal concentrations of inorganics computed from a recently posited reaction–diffusion model for VPI. This model provides insight on how the Damköhler number (reaction versus diffusion rates) and non-Fickian diffusional processes (hindering) that result from the material transforming from a polymer to a hybrid can affect the evolution of inorganic concentration depth profiles with time. Subsequently, experimental XPS depth profiles are collected for TMA and TiCl 4 infiltrated PMMA films at 90 °C and 135 °C. The functional behavior of these depth profiles at varying infiltration times are qualitatively compared to various computed predictions and conclusions are drawn about the mechanisms of each of these processes. TMA infiltration into PMMA appears to transition from a diffusion-limited process at low temperatures (90 °C) to a reaction-limited process at high temperatures (135 °C) for the film thicknesses investigated here (200 nm). While TMA appears to fully infiltrate these 200 nm PMMA films within a few hours, TiCl 4 infiltration into PMMA is considerably slower, with full saturation not occurring even after 2 days of precursor exposure. Infiltration at 90 °C is so slow that no clear conclusions about mechanism can be drawn; however, at 135 °C, the TiCl 4 infiltration into PMMA is clearly a reaction-limited process, with TiCl 4 permeating the entire thickness (at low concentrations) within only a few minutes, but inorganic loading continuously increasing in a uniform manner over a course of 2 days. Near-surface deviations from the uniform-loading expected for a reaction-limited process also suggest that diffusional hindering is high for TiCl 4 infiltration into PMMA. These results demonstrate a new, ex situ analysis approach for investigating the rate-limiting process mechanisms for vapor phase infiltration. 
    more » « less
  4. The combination of precision control with wide tunability remains a challenge for the fabrication of porous nanomaterials suitable for studies of nanostructure–behavior relationships. Polymer micelle templates broadly enable porous materials, however micelle equilibration hampers independent pore and wall size control. Persistent micelle templates (PMT) have emerged as a kinetic controlled platform that uniquely decouples the control of pore and wall dimensions. Here, chain exchange is inhibited to preserve a constant template dimension (pore size) despite the shifting equilibrium while materials are added between micelles. Early PMT demonstrations were synthesis intensive with limited 1–1.3× pore size tuning for a given polymer. Here we demonstrate PMT swelling with homopolymer enables 1–3.2× (13.3–41.9 nm) pore size variation while maintaining a monomodal distribution with up to 250 wt% homopolymer, considerably higher than the ∼90 wt% limit found for equilibrating micelles. These swollen PMTs enabled nanomaterial series with constant pore size and precision varied wall-thickness. Kinetic size control here is unexpected since the homopolymer undergoes dynamic exchange between micelles. The solvent selection influenced the time window before homopolymer phase separation, highlighting the importance of considering homopolymer–solvent interactions. This is the first PMT demonstration with wide variation of both the pore and wall dimensions using a single block polymer. Lastly this approach was extended to a 72 kg mol −1 block polymer to enable a wide 50–290 nm range of tunable macropores. Here the use of just two different block polymers and one homopolymer enabled wide ranging pore sizes spanning from 13.3–290 nm (1–22×). 
    more » « less
  5. Abstract

    Although processing via external stimuli is a promising technique to tune the structure and properties of polymeric materials, the impact of magnetic fields on phase transitions in thermoresponsive polymer solutions is not well‐understood. As nanoparticle (NP) addition is also known to impact these thermodynamic and optical properties, synergistic effects from combining magnetic fields with NP incorporation provide a novel route for tuning material properties. Here, the thermodynamic, optical, and rheological properties of aqueous poly(N‐isopropyl acrylamide) (PNIPAM) solutions are examined in the presence of hydrophilic silica NPs and magnetic fields, individually and jointly, via Fourier‐transform infrared spectroscopy (FTIR), magneto‐turbidimetry, differential scanning calorimetry (DSC), and magneto‐rheology. While NPs and magnetic fields both reduce the phase separation energy barrier and lower optical transition temperatures by altering hydrogen bonding (H‐bonding), infrared spectra demonstrate that the mechanism by which these changes occur is distinct. Magnetic fields primarily alter solvent polarization while NPs provide PNIPAM–NP H‐bonding sites. Combining NP addition with field application uniquely alters the solution environment and results in field‐dependent rheological behavior that is unseen in polymer‐only solutions. These investigations provide fundamental understanding on the interplay of magnetic fields and NP addition on PNIPAM thermoresponsivity which can be harnessed for increasingly complex stimuli‐responsive materials.

     
    more » « less