Abstract The bulk density of a planet, as measured by mass and radius, is a result of planet structure and composition. Relative proportions of iron core, rocky mantle, and gaseous envelopes are degenerate for a given density. This degeneracy is reduced for rocky planets without significant gaseous envelopes when the structure is assumed to be a differentiated iron core and rocky mantle, in which the core mass fraction (CMF) is a first-order description of a planet’s bulk composition. A rocky planet’s CMF may be derived both from bulk density and by assuming the planet reflects the host star’s major rock-building elemental abundances (Fe, Mg, and Si). Contrasting CMF measures, therefore, shed light on the outcome diversity of planet formation from processes including mantle stripping, out-gassing, and/or late-stage volatile delivery. We present a statistically rigorous analysis of the consistency of these two CMF measures accounting for observational uncertainties of planet mass and radius and host-star chemical abundances. We find that these two measures are unlikely to be resolvable as statistically different unless the bulk density CMF is at least 40% greater than or 50% less than the CMF as inferred from the host star. Applied to 11 probable rocky exoplanets, Kepler-107 c has a CMF as inferred from bulk density that is significantly greater than the inferred CMF from its host star (2σ) and is therefore likely an iron-enriched super-Mercury. K2-229b, previously described as a super-Mercury, however, does not meet the threshold for a super-Mercury at a 1σor 2σlevel.
more »
« less
A Reanalysis of the Composition of K2-106b: An Ultra-short-period Super-Mercury Candidate
We present a reanalysis of the K2-106 transiting planetary system, with a focus on the composition of K2-106b, an ultra-short-period, super-Mercury candidate. We globally model existing photometric and radial velocity data and derive a planetary mass and radius for K2-106b of Mp = 8.53 ± 1.02 M⊕ and = - + Rp 1.71 0.057 RÅ 0.069 , which leads to a density of r = - + 9.4 p 1.5 1.6 g cm−3 , a significantly lower value than previously reported in the literature. We use planet interior models that assume a two-layer planet comprised of a liquid, pure Fe core and an iron-free, MgSiO3 mantle, and we determine that the range of the core mass fractions are consistent with the observed mass and radius. We use existing high-resolution spectra of the host star to derive the Fe/Mg/Si abundances ([Fe/ H] = −0.03 ± 0.01, [Mg/H] = 0.04 ± 0.02, [Si/H] = 0.03 ± 0.06) to infer the composition of K2-106b. We find that K2-106b has a density and core mass fraction ( - + 44 %15 12 ) consistent with that of Earth (CMF⊕ = 32%). Furthermore, its composition is consistent with what is expected, assuming that it reflects the relative refractory abundances of its host star. K2-106b is therefore unlikely to be a super-Mercury, as has been suggested in previous literature.
more »
« less
- Award ID(s):
- 2143400
- PAR ID:
- 10488688
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 3
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an in-depth, high-resolution spectroscopic analysis of the M dwarf K2-18, which hosts a sub-Neptune exoplanet in its habitable zone. We show our technique to accurately normalize the observed spectrum, which is crucial for a proper spectral fitting. We also introduce a new automatic, line-by-line, model-fitting code, AutoSpecFit, which performs an iterativeχ2minimization process to measure individual elemental abundances of cool dwarfs. We apply this code to the star K2-18, and measure the abundance of 10 elements: C, O, Na, Mg, Al, K, Ca, Sc, Ti, and Fe. We find these abundances to be moderately supersolar, except for Fe, with a slightly subsolar abundance. The accuracy of the inferred abundances is limited by the systematic errors due to uncertain stellar parameters. We also derive the abundance ratios associated with several planet-building elements such as Al/Mg, Ca/Mg, Fe/Mg, and (a solar-like) C/O = 0.568 ± 0.026, which can be used to constrain the chemical composition and the formation location of the exoplanet. On the other hand, the planet K2-18 b has attracted considerable interest, given the JWST measurements of its atmospheric composition. Early JWST studies reveal an unusual chemistry for the atmosphere of this planet, which is unlikely to be driven by formation in a disk of unusual composition. The comparison between the chemical abundances of K2-18 b from future JWST analyses and those of the host star can provide fundamental insights into the formation of this planetary system.more » « less
-
Abstract TOI-561 is a galactic thick-disk star hosting an ultra-short-period (0.45-day-orbit) planet with a radius of 1.37R⊕, making it one of the most metal-poor ([Fe/H] = −0.41) and oldest (≈10 Gyr) sites where an Earth-sized planet has been found. We present new simultaneous radial velocity (RV) measurements from Gemini-N/MAROON-X and Keck/HIRES, which we combined with literature RVs to derive a mass ofMb= 2.24 ± 0.20M⊕. We also used two new sectors of TESS photometry to improve the radius determination, findingRb= 1.37 ± 0.04R⊕and confirming that TOI-561 b is one of the lowest-density super-Earths measured to date (ρb= 4.8 ± 0.5 g cm−3). This density is consistent with an iron-poor rocky composition reflective of the host star’s iron and rock-building element abundances; however, it is also consistent with a low-density planet with a volatile envelope. The equilibrium temperature of the planet (∼2300 K) suggests that this envelope would likely be composed of high mean molecular weight species, such as water vapor, carbon dioxide, or silicate vapor, and is likely not primordial. We also demonstrate that the composition determination is sensitive to the choice of stellar parameters and that further measurements are needed to determine whether TOI-561 b is a bare rocky planet, a rocky planet with an optically thin atmosphere, or a rare example of a nonprimordial envelope on a planet with a radius smaller than 1.5R⊕.more » « less
-
Abstract With the launch of the JWST, we will obtain more precise data for exoplanets than ever before. However, these data can only inform and revolutionize our understanding of exoplanets when placed in the larger context of planet–star formation. Therefore, gaining a deeper understanding of their host stars is equally important and synergistic with the upcoming JWST data. We present detailed chemical abundance profiles of 17 FGK stars that will be observed in exoplanet-focused Cycle 1 JWST observer programs. The elements analyzed (C, N, O, Na, Mg, Si, S, K, and Fe) were specifically chosen as being informative to the composition and formation of planets. Using archival high-resolution spectra from a variety of sources, we perform an LTE equivalent width analysis to derive these abundances. We look to literature sources to correct the abundances for non-LTE effects, especially for O, S, and K, where the corrections are large (often >0.2 dex). With these abundances and the ratios thereof, we will begin to paint clearer pictures of the planetary systems analyzed by this work. With our analysis, we can gain insight into the composition and extent of migration of Hot Jupiters, as well as the possibility of carbon-rich terrestrial worlds.more » « less
-
Context . The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R ⊕ and 3.0 M ⊕ . It is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets. Aims . To prepare for future studies, we aim to thoroughly characterise the planetary system with new accurate and precise data collected with state-of-the-art photometers from space and spectrometers and interferometers from the ground. Methods . We collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X at the 8.1 m Gemini North telescope and CARMENES at the 3.5 m Calar Alto telescope, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed near-infrared interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes (AstroLAB, LCOGT, OSN, TJO). This extraordinary and rich data set was the input for our comprehensive analysis. Results . From interferometry, we measure a limb-darkened disc angular size of the star Gl 486 at θ LDD = 0.390 ± 0.018 mas. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius R * = 0.339 ± 0.015 R ⊕ . We also measure a stellar rotation period at P rot = 49.9 ± 5.5 days, an upper limit to its XUV (5-920 A) flux informed by new Hubble /STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Moreover, we imposed restrictive constraints on the presence of additional components, either stellar or sub-stellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at R p = 1.343 −0.062 +0.063 R ⊕ and M p = 3.00 −0.12 +0.13 M ⊕ , with relative uncertainties of the planet radius and mass of 4.7% and 4.2%, respectively. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope ( Webb ) observations.more » « less
An official website of the United States government

